Do you want to publish a course? Click here

Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions

232   0   0.0 ( 0 )
 Added by Takuya Iwashita
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The non-Newtonian behavior of a monodisperse concentrated dispersion of spherical particles was investigated using a direct numerical simulation method, that takes into account hydrodynamic interactions and thermal fluctuations accurately. Simulations were performed under steady shear flow with periodic boundary conditions in the three directions. The apparent shear viscosity of the dispersions was calculated at volume fractions ranging from 0.31 to 0.56. Shear-thinning behavior was clearly observed at high volume fractions. The low- and high-limiting viscosities were then estimated from the apparent viscosity by fitting these data into a semi-empirical formula. Furthermore, the short-time motions were examined for Brownian particles fluctuating in concentrated dispersions, for which the fluid inertia plays an important role. The mean square displacement was monitored in the vorticity direction at several different Peclet numbers and volume fractions so that the particle diffusion coefficient is determined from the long-time behavior of the mean square displacement. Finally, the relationship between the non-Newtonian viscosity of the dispersions and the structural relaxation of the dispersed Brownian particles is examined.

rate research

Read More

102 - T. Iwashita , T. Kumagai , 2009
We report an extension of the smoothed profile method (SPM)[Y. Nakayama, K. Kim, and R. Yamamoto, Eur. Phys. J. E {bf 26}, 361(2008)], a direct numerical simulation method for calculating the complex modulus of the dispersion of particles, in which we introduce a temporally oscillatory external force into the system. The validity of the method was examined by evaluating the storage $G(omega)$ and loss $G(omega)$ moduli of a system composed of identical spherical particles dispersed in an incompressible Newtonian host fluid at volume fractions of $Phi=0$, 0.41, and 0.51. The moduli were evaluated at several frequencies of shear flow; the shear flow used here has a zigzag profile, as is consistent with the usual periodic boundary conditions.
A general methodology is presented to perform direct numerical simulations of particle dispersions in a shear flow with Lees-Edwards periodic boundary conditions. The Navier-Stokes equation is solved in oblique coordinates to resolve the incompatibility of the fluid motions with the sheared geometry, and the force coupling between colloidal particles and the host fluid is imposed by using a smoothed profile method. The validity of the method is carefully examined by comparing the present numerical results with experimental viscosity data for particle dispersions in a wide range of volume fractions and shear rates including nonlinear shear-thinning regimes.
Motions of fluctuating Brownian particles in an incompressible viscous fluid have been studied by coupled simulations of Brownian particles and host fluid. We calculated the velocity autocorrelation functions of Brownian particles and compared them with the theoretical results. Extensive discussions have been made on the time scales for which our numerical model is valid.
90 - Gerhard Besold 2000
Coarse-grained models that preserve hydrodynamics provide a natural approach to study collective properties of soft-matter systems. Here, we demonstrate that commonly used integration schemes in dissipative particle dynamics give rise to pronounced artifacts in physical quantities such as the compressibility and the diffusion coefficient. We assess the quality of these integration schemes, including variants based on a recently suggested self-consistent approach, and examine their relative performance. Implications of integrator-induced effects are discussed.
Collective behaviour in suspensions of microswimmers is often dominated by the impact of long-ranged hydrodynamic interactions. These phenomena include active turbulence, where suspensions of pusher bacteria at sufficient densities exhibit large-scale, chaotic flows. To study this collective phenomenon, we use large-scale (up to $N=3times 10^6$) particle-resolved lattice Boltzmann simulations of model microswimmers described by extended stresslets. Such system sizes enable us to obtain quantitative information about both the transition to active turbulence and characteristic features of the turbulent state itself. In the dilute limit, we test analytical predictions for a number of static and dynamic properties against our simulation results. For higher swimmer densities, where swimmer-swimmer interactions become significant, we numerically show that the length- and timescales of the turbulent flows increase steeply near the predicted finite-system transition density.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا