We compare femtosecond pump-probe experiments in Ni and micromagnetic modelling based on the Landau-Lifshitz-Bloch equation coupled to a two-temperature model, revealing a predominant thermal ultrafast demagnetization mechanism. We show that both spin (femtosecond demagnetization) and electron-phonon (magnetization recovery) rates in Ni increase as a function of the laser pump fluence. The slowing down for high fluences arises from the increased longitudinal relaxation time.
Magnetization manipulation is becoming an indispensable tool for both basic and applied research. Theory predicts two types of ultrafast demagnetization dynamics classified as type I and type II. In type II materials, a second slower process takes place after the initial fast drop of magnetization. In this letter we investigate this behavior for FePt recording materials with perpendicular anisotropy. The magnetization dynamics have been simulated using a thermal micromagnetic model based on the Landau-Lifshitz-Bloch equation. We identify a transition to type II behavior and relate it to the electron temperatures reached by the laser heating. This slowing down is a fundamental limit to reconding speeds in heat assisted reversal.
Through numerical solution of the time-dependent Schrodinger equation, we demonstrate that magnetic chains with uniaxial anisotropy support stable structures, separating ferromagnetic domains of opposite magnetization. These structures, domain walls in a quantum system, are shown to remain stable if they interact with a spin wave. We find that a domain wall transmits the longitudinal component of the spin excitations only. Our results suggests that continuous, classical spin models described by LLG equation cannot be used to describe spin wave-domain wall interaction in microscopic magnetic systems.
Neutron powder diffraction experiments reveal that Co4Nb2O9 forms a noncollinear in-plane magnetic structure with Co2+ moments lying in the ab plane. The spin-wave excitations of this magnet were measured by using inelastic neutron scattering and soundly simulated by a dynamic model involving nearest and next-nearest neighbour exchange interactions, in-plane anisotropy and the Dzyaloshinskii-Moriya interaction. The in-plane magnetic structure of Co4Nb2O9 is attributed to the large in-plane anisotropy while the noncollinearity of the spin configuration is attributed to the Dzyaloshinskii-Moriya interaction. The high magnetoelectric coupling effect of Co4Nb2O9 in fields can be explained by its special in-plane magnetic structure.
Spin and orbital angular momenta are two intrinsic properties of an electron and are responsible for the physics of a solid. How the spin and orbital evolve with respect to each other on several hundred femtoseconds is largely unknown, but it is at the center of laser-induced ultrafast demagnetization. In this paper, we introduce a concept of the spin-orbital correlation diagram, where spin angular momentum is plotted against orbital angular momentum, much like the position-velocity phase diagram in classical mechanics. We use four sets of highly accurate time-resolved x-ray magnetic circular dichroism (TR-XMCD) data to construct four correlation diagrams for iron and cobalt. To our surprise, a pattern emerges. The trace on the correlation diagram for iron is an arc, and at the end of demagnetization, it has a pronounced cusp. The correlation diagram for cobalt is different and appears more linear, but with kinks. We carry out first-principles calculations with two different methods: time-dependent density functional theory (TDDFT) and time-dependent Liouville density functional theory (TDLDFT). These two methods agree that the experimental findings for both Fe and Co are not due t experimental errors. It is the spin-orbit coupling that correlates the spin dynamics to the orbital dynamics.Microscopically, Fe and Co have different orbital occupations, which leads to distinctive correlation diagrams. We believe that this correlation diagram presents a useful tool to better understand spin and orbital dynamics on an ultrafast time scale. A brief discussion on the magnetic anisotropy energy is also provided.
It has been known for decades that thermal conductivity of insulating crystals becomes proportional to the inverse of temperature when the latter is comparable to or higher than the Debye temperature. This behavior has been understood as resulting from Umklapp scattering among phonons. We put under scrutiny the magnitude of the thermal diffusion constant in this regime and find that it does not fall below a threshold set by the square of sound velocity times the Planckian time ($tau_p=hbar/k_BT$). The conclusion, based on scrutinizing the ratio in cubic crystals with high thermal resistivity, appears to hold even in glasses where Umklapp events are not conceivable. Explaining this boundary, reminiscent of a recently-noticed limit for charge transport in metals, is a challenge to theory.