Do you want to publish a course? Click here

RR Lyrae Variables in Two Fields in the Spheroid of M31

140   0   0.0 ( 0 )
 Added by Ata Sarajedini
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Hubble Space Telescope observations taken with the Advanced Camera for Surveys Wide Field Channel of two fields near M32 - between four and six kpc from the center of M31. The data cover a time baseline sufficient for the identification and characterization of 681 RR Lyrae variables of which 555 are ab-type and 126 are c-type. The mean magnitude of these stars is <V>=25.29 +/- 0.05 where the uncertainty combines both the random and systematic errors. The location of the stars in the Bailey Diagram and the ratio of c-type RR Lyraes to all types are both closer to RR Lyraes in Oosterhoff type I globular clusters in the Milky Way as compared with Oosterhoff II clusters. The mean periods of the ab-type and c-type RR Lyraes are <P(ab)>=0.557 +/- 0.003 and <P(c)>=0.327 +/- 0.003, respectively, where the uncertainties in each case represent the standard error of the mean. When the periods and amplitudes of the ab-type RR Lyraes in our sample are interpreted in terms of metallicity, we find the metallicity distribution function to be indistinguishable from a Gaussian with a peak at <[Fe/H]>=-1.50 +/- 0.02, where the quoted uncertainty is the standard error of the mean. Using a relation between RR Lyrae luminosity and metallicity along with a reddening of E(B-V) = 0.08 +/- 0.03, we find a distance modulus of (m-M)o=24.46 +/- 0.11 for M31. We examine the radial metallicity gradient in the environs of M31 using published values for the bulge and halo of M31 as well as the abundances of its dwarf spheroidal companions and globular clusters. In this context, we conclude that the RR Lyraes in our two fields are more likely to be halo objects rather than associated with the bulge or disk of M31, in spite of the fact that they are located at 4-6 kpc in projected distance from the center.



rate research

Read More

179 - A. Savino , A. Koch , Z. Prudil 2020
The central kiloparsecs of the Milky Way are known to host an old, spheroidal stellar population, whose spatial and kinematical properties set it apart from the boxy/peanut structure that constitutes most of the central stellar mass. The nature of this spheroidal population, whether a small classical bulge, the innermost stellar halo or a population of disk stars with large initial velocity dispersion, remains unclear. This structure is also a promising candidate to host some of the oldest stars in the Galaxy. Here we address the topic of the inner stellar spheroid age, using spectroscopic and photometric metallicities for a sample of 935 RR Lyrae stars that are constituents of this component. By means of stellar population synthesis, we derive an age-metallicity relation for RR Lyrae populations. We infer, for the RR Lyrae stars in the bulge spheroid, an extremely ancient age of $13.41 pm 0.54$ Gyr and conclude they were among the first stars to form in what is now the Milky Way galaxy. Our age estimate for the central spheroid shows remarkable agreement with the age profile that has been inferred for the Milky Way stellar halo, suggesting a connection between the two structures. However, we find mild evidence for a transition in the halo properties at $r_{rm GC} sim 5$~kpc. We also investigate formation scenarios for metal-rich RR Lyrae stars, such as binarity and helium variations, and whether they can provide alternative explanations for the properties of our sample. We conclude that, within our framework, the only viable alternative is to have younger, slightly helium-rich, RR Lyrae stars, a hypothesis that would open intriguing questions for the formation of the inner stellar spheroid.
127 - T. D. Kinman 2010
It is not easy to identify and classify low-amplitude variables, but it is important that the classification is done correctly. We use photometry and spectroscopy to classify low-amplitude variables in a 246 deg^2 part of the Akerlof et al. (2002) field. Akerlof and collaborators found that 38% of the RR Lyrae stars in their 2000 deg^2 test field were RR1 (type c). This suggests that these RR Lyrae stars belong to an Oosterhoff Type II population while their period distribution is primarily Oosterhoff Type I. Our observations support their RR0 (type ab) classifications, however 6 of the 7 stars that they classified as RR1 (type c) are eclipsing binaries. Our classifications are supported by spectroscopic metallicities, line-broadening and Galactic rotation measurements. Our 246 deg^2 field contains 16 RR Lyrae stars that are brighter than m_R = 14.5; only four of these are RR1 (type c). This corresponds to an Oosterhoff Type I population in agreement with the period distribution.
151 - G. Hajdu , M. Catelan (1 2015
Despite their importance, very few RR Lyrae (RRL) stars have been known to reside in binary systems. We report on a search for binary RRL in the OGLE-III Galactic bulge data. Our approach consists in the search for evidence of the light-travel time effect in so-called observed minus calculated ($O-C$) diagrams. Analysis of 1952 well-observed fundamental-mode RRL in the OGLE-III data revealed an initial sample of 29 candidates. We used the recently released OGLE-IV data to extend the baselines up to 17 years, leading to a final sample of 12 firm binary candidates. We provide $O-C$ diagrams and binary parameters for this final sample, and also discuss the properties of 8 additional candidate binaries whose parameters cannot be firmly determined at present. We also estimate that $gtrsim 4$ per cent of the RRL reside in binary systems.
81 - Z. Prudil , M. Hanke , B. Lemasle 2021
We present a chemo-dynamical study of the Orphan stellar stream using a catalog of RR~Lyrae pulsating variable stars for which photometric, astrometric, and spectroscopic data are available. Employing low-resolution spectra from the Sloan Digital Sky Survey (SDSS), we determined line-of-sight velocities for individual exposures and derived the systemic velocities of the RR~Lyrae stars. In combination with the stars spectroscopic metallicities and textit{Gaia} EDR3 astrometry, we investigated the northern part of the Orphan stream. In our probabilistic approach, we found 20 single mode RR~Lyrae variables likely associated with the Orphan stream based on their positions, proper motions, and distances. The acquired sample permitted us to expand our search to nonvariable stars in the SDSS dataset, utilizing line-of-sight velocities determined by the SDSS. We found 54 additional nonvariable stars linked to the Orphan stream. The metallicity distribution for the identified red giant branch stars and blue horizontal branch stars is, on average, $-2.13pm0.05$ dex and $-1.87pm0.14$ dex, with dispersions of 0.23 and 0.43dex, respectively. The metallicity distribution of the RR~Lyrae variables peaks at $-1.80pm0.06$ dex and a dispersion of 0.25dex. Using the collected stellar sample, we investigated a possible link between the ultra-faint dwarf galaxy Grus II and the Orphan stream. Based on their kinematics, we found that both the stream RR~Lyrae and Grus II are on a prograde orbit with similar orbital properties, although the large uncertainties on the dynamical properties render an unambiguous claim of connection difficult. At the same time, the chemical analysis strongly weakens the connection between both. We argue that Grus II in combination with the Orphan stream would have to exhibit a strong inverse metallicity gradient, which to date has not been detected in any Local Group system.
55 - G. Clementini 2001
The purpose of this paper is to show that RR Lyrae variables exist and can be detected in M31 globular clusters. We report on the first tentative identification of RR Lyrae candidates in four globular clusters of the Andromeda galaxy, i.e. G11, G33, G64 and G322. Based on HST-WFPC2 archive observations in the F555W and F814W filters spanning a total interval of about 5 consecutive hours we find evidence for 2, 4, 11 and 8 RR Lyrae variables of both ab and c Bailey types in G11, G33, G64 and G322, respectively. Several more candidates can be found by relaxing slightly the selection criteria. These numbers are quite consistent with the horizontal branch morphology exhibited by the four clusters, starting from the very blue HB in G11, and progressively moving to redder HBs in G64, G33 and G322.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا