Evidence for strong dynamical evolution in disk galaxies through the last 11 Gyr. GHASP VIII: A local reference sample of rotating disk galaxies for high redshift studies


Abstract in English

[Abridged] Due to their large distances, high-z galaxies are observed at a very low spatial resolution. In order to disentangle the evolution of galaxy kinematics from low resolution effects, we have used Fabry-Perot 3D Ha data-cubes of 153 nearby isolated galaxies from the GHASP survey to simulate data-cubes of galaxies at z=1.7. We show that the inner velocity gradient is lowered and is responsible for a peak in the velocity dispersion map. Toy-models of rotating disks have been built to recover the parameters from low resolution data. The poor resolution makes the kinematical inclination uncertain and the center difficult to recover. The major axis is retrieved with an accuracy higher than 5deg for 70% of the sample. Toy-models also enable to retrieve statistically the maximum velocity and the mean velocity dispersion of galaxies with a satisfying accuracy. This validates the use of the Tully-Fisher relation for high-z galaxies but the loss of resolution induces a lower slope at high-z. We conclude that the main kinematic parameters are better constrained for galaxies with an optical radius larger than three times the seeing. The simulated data have been compared to actual high-z galaxies data in the redshift range 3>z>0.4. For rotation-dominated galaxies, we find that the use of the velocity dispersion central peak as a signature of rotating disks may misclassify slow and solid body rotators (~30% of our sample). We show that the projected data cannot reproduce the high velocity dispersion observed in high-z galaxies except when no beam smearing correction is applied. This unambiguously means that, at the opposite of local evolved galaxies, there exists at high redshift at least a population of disk galaxies for which a large fraction of the dynamical support is due to random motions.

Download