Do you want to publish a course? Click here

Automated Epilepsy Diagnosis Using Interictal Scalp EEG

109   0   0.0 ( 0 )
 Added by Forrest Sheng Bao
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

Approximately over 50 million people worldwide suffer from epilepsy. Traditional diagnosis of epilepsy relies on tedious visual screening by highly trained clinicians from lengthy EEG recording that contains the presence of seizure (ictal) activities. Nowadays, there are many automatic systems that can recognize seizure-related EEG signals to help the diagnosis. However, it is very costly and inconvenient to obtain long-term EEG data with seizure activities, especially in areas short of medical resources. We demonstrate in this paper that we can use the interictal scalp EEG data, which is much easier to collect than the ictal data, to automatically diagnose whether a person is epileptic. In our automated EEG recognition system, we extract three classes of features from the EEG data and build Probabilistic Neural Networks (PNNs) fed with these features. We optimize the feature extraction parameters and combine these PNNs through a voting mechanism. As a result, our system achieves an impressive 94.07% accuracy, which is very close to reported human recognition accuracy by experienced medical professionals.



rate research

Read More

77 - Alex Cheng , Jules White 2018
Outpatient clinics often run behind schedule due to patients who arrive late or appointments that run longer than expected. We sought to develop a generalizable method that would allow healthcare providers to diagnose problems in workflow that disrupt the schedule on any given provider clinic day. We use a constraint optimization problem to identify the least number of appointment modifications that make the rest of the schedule run on-time. We apply this method to an outpatient clinic at Vanderbilt. For patient seen in this clinic between March 27, 2017 and April 21, 2017, long cycle times tended to affect the overall schedule more than late patients. Results from this workflow diagnosis method could be used to inform interventions to help clinics run smoothly, thus decreasing patient wait times and increasing provider utilization.
Critical task and cognition-based environments, such as in military and defense operations, aviation user-technology interaction evaluation on UI, understanding intuitiveness of a hardware model or software toolkit, etc. require an assessment of how much a particular task is generating mental workload on a user. This is necessary for understanding how those tasks, operations, and activities can be improvised and made better suited for the users so that they reduce the mental workload on the individual and the operators can use them with ease and less difficulty. However, a particular task can be gauged by a user as simple while for others it may be difficult. Understanding the complexity of a particular task can only be done on user level and we propose to do this by understanding the mental workload (MWL) generated on an operator while performing a task which requires processing a lot of information to get the task done. In this work, we have proposed an experimental setup which replicates modern day workload on doing regular day job tasks. We propose an approach to automatically evaluate the task complexity perceived by an individual by using electroencephalogram (EEG) data of a user during operation. Few crucial steps that are addressed in this work include extraction and optimization of different features and selection of relevant features for dimensionality reduction and using supervised machine learning techniques. In addition to this, performance results of the classifiers are compared using all features and also using only the selected features. From the results, it can be inferred that machine learning algorithms perform better as compared to traditional approaches for mental workload estimation.
Schizophrenia (SZ) is a mental disorder whereby due to the secretion of specific chemicals in the brain, the function of some brain regions is out of balance, leading to the lack of coordination between thoughts, actions, and emotions. This study provides various intelligent Deep Learning (DL)-based methods for automated SZ diagnosis via EEG signals. The obtained results are compared with those of conventional intelligent methods. In order to implement the proposed methods, the dataset of the Institute of Psychiatry and Neurology in Warsaw, Poland, has been used. First, EEG signals are divided into 25-seconds time frames and then were normalized by z-score or norm L2. In the classification step, two different approaches are considered for SZ diagnosis via EEG signals. In this step, the classification of EEG signals is first carried out by conventional DL methods, e.g., KNN, DT, SVM, Bayes, bagging, RF, and ET. Various proposed DL models, including LSTMs, 1D-CNNs, and 1D-CNN-LSTMs, are used in the following. In this step, the DL models were implemented and compared with different activation functions. Among the proposed DL models, the CNN-LSTM architecture has had the best performance. In this architecture, the ReLU activation function and the z-score and L2 combined normalization are used. The proposed CNN-LSTM model has achieved an accuracy percentage of 99.25%, better than the results of most former studies in this field. It is worth mentioning that in order to perform all simulations, the k-fold cross-validation method with k=5 has been used.
Predicting post-operative seizure freedom using functional correlation networks derived from interictal intracranial EEG has shown some success. However, there are important challenges to consider. 1: electrodes physically closer to each other naturally tend to be more correlated causing a spatial bias. 2: implantation location and number of electrodes differ between patients, making cross-subject comparisons difficult. 3: functional correlation networks can vary over time but are currently assumed as static. In this study we address these three substantial challenges using intracranial EEG data from 55 patients with intractable focal epilepsy. Patients additionally underwent preoperative MR imaging, intra-operative CT, and post-operative MRI allowing accurate localisation of electrodes and delineation of removed tissue. We show that normalising for spatial proximity between nearby electrodes improves prediction of post-surgery seizure outcomes. Moreover, patients with more extensive electrode coverage were more likely to have their outcome predicted correctly (ROC-AUC >0.9, p<<0.05), but not necessarily more likely to have a better outcome. Finally, our predictions are robust regardless of the time segment. Future studies should account for the spatial proximity of electrodes in functional network construction to improve prediction of post-surgical seizure outcomes. Greater coverage of both removed and spared tissue allows for predictions with higher accuracy.
Sepsis is a leading cause of mortality and critical illness worldwide. While robust biomarkers for early diagnosis are still missing, recent work indicates that hyperspectral imaging (HSI) has the potential to overcome this bottleneck by monitoring microcirculatory alterations. Automated machine learning-based diagnosis of sepsis based on HSI data, however, has not been explored to date. Given this gap in the literature, we leveraged an existing data set to (1) investigate whether HSI-based automated diagnosis of sepsis is possible and (2) put forth a list of possible confounders relevant for HSI-based tissue classification. While we were able to classify sepsis with an accuracy of over $98,%$ using the existing data, our research also revealed several subject-, therapy- and imaging-related confounders that may lead to an overestimation of algorithm performance when not balanced across the patient groups. We conclude that further prospective studies, carefully designed with respect to these confounders, are necessary to confirm the preliminary results obtained in this study.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا