Do you want to publish a course? Click here

Host galaxy morphologies of X-ray selected AGN: assessing the significance of different black hole fueling mechanisms to the accretion density of the Universe at z~1

150   0   0.0 ( 0 )
 Added by Antonis Georgakakis
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use morphological information of X-ray selected AGN hosts to set limits on the fraction of the accretion density of the Universe at z~1 that is not likely to be associated with major mergers. Deep X-ray observations are combined with high resolution optical data from the Hubble Space Telescope in the AEGIS, GOODS North and GOODS South fields to explore the morphological breakdown of X-ray sources in the redshift interval 0.5<z<1.3. The sample is split into disks, early-type bulge dominated galaxies, peculiar systems and point-sources in which the nuclear source outshines the host galaxy. The X-ray luminosity function and luminosity density of AGN at z~1 are then calculated as a function of morphological type. We find that disk-dominated hosts contribute 30pm9 per cent to the total AGN space density and 23pm6 per cent to the luminosity density at z~1. We argue that AGN in disk galaxies are most likely fueled not by major merger events but by minor interactions or internal instabilities. We find evidence that these mechanisms may be more efficient in producing luminous AGN (L_X>1e44 erg/s) compared to predictions for the stochastic fueling of massive black holes in disk galaxies.



rate research

Read More

We investigate the optical morphologies of candidate active galaxies identified at radio, X-ray, and mid-infrared wavelengths. We use the Advanced Camera for Surveys General Catalog (ACS-GC) to identify 372, 1360, and 1238 AGN host galaxies from the VLA, XMM-Newton and Spitzer Space Telescope observations of the COSMOS field, respectively. We investigate both quantitative (GALFIT) and qualitative (visual) morphologies of these AGN host galaxies, split by brightness in their selection band. We find that the radio-selected AGN are most distinct, with a very low incidence of having unresolved optical morphologies and a high incidence of being hosted by early-type galaxies. In comparison to X-ray selected AGN, mid-IR selected AGN have a slightly higher incidence of being hosted by disk galaxies. These morphological results conform with the results of Hickox et al. 2009 who studied the colors and large-scale clustering of AGN, and found a general association of radio-selected AGN with ``red sequence galaxies, mid-IR selected AGN with ``blue cloud galaxies, and X-ray selected AGN straddling these samples in the ``green valley. In the general scenario where AGN activity marks and regulates the transition from late-type disk galaxies into massive elliptical galaxies, this work suggests that the earlier stages are most evident as mid-IR selected AGNs. Mid-IR emission is less susceptible to absorption than the relatively soft X-rays probed by XMM-Newton, which are seen at later stages in the transition. Radio-selected AGN are then typically associated with minor bursts of activity in the most massive galaxies.
We describe the effect of AGN light on host galaxy optical and UV-optical colours, as determined from X-ray-selected AGN host galaxies at z~1, and compare the AGN host galaxy colours to those of a control sample matched to the AGN sample in both redshift and stellar mass. We identify as X-ray-selected AGNs 8.7 +4/-3 per cent of the red-sequence control galaxies, 9.8 +/-3 per cent of the blue-cloud control galaxies, and 14.7 +4/-3 per cent of the green-valley control galaxies. The nuclear colours of AGN hosts are generally bluer than their outer colours, while the control galaxies exhibit redder nuclei. AGNs in blue-cloud host galaxies experience less X-ray obscuration, while AGNs in red-sequence hosts have more, which is the reverse of what is expected from general considerations of the interstellar medium. Outer and integrated colours of AGN hosts generally agree with the control galaxies, regardless of X-ray obscuration, but the nuclear colours of unobscured AGNs are typically much bluer, especially for X-ray luminous objects. Visible point sources are seen in many of these, indicating that the nuclear colours have been contaminated by AGN light and that obscuration of the X-ray radiation and visible light are therefore highly correlated. Red AGN hosts are typically slightly bluer than red-sequence control galaxies, which suggests that their stellar populations are slightly younger. We compare these colour data to current models of AGN formation. The unexpected trend of less X-ray obscuration in blue-cloud galaxies and more in red-sequence galaxies is problematic for all AGN feedback models, in which gas and dust is thought to be removed as star formation shuts down. [See paper for full abstract.]
Using HST/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), we examine the role that major galaxy mergers play in triggering active galactic nuclei (AGN) activity at z~2. Our sample consists of 72 moderate-luminosity (Lx ~ 1E42-1E44 erg/s) AGN at 1.5<z<2.5 that are selected using the 4 Msec Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGN reside in disk galaxies (51.4%), while a smaller percentage are found in spheroids (27.8%). Roughly 16.7% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGN are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z~2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z~2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that secular processes play a greater role in fueling AGN activity at z~2 than previously thought.
The cosmic black hole accretion density (BHAD) is critical for our understanding of the formation and evolution of supermassive black holes (BHs). However, at high redshifts ($z>3$), X-ray observations report BHADs significantly ($sim 10$ times) lower than those predicted by cosmological simulations. It is therefore paramount to constrain the high-$z$ BHAD using independent methods other than direct X-ray detections. The recently established relation between star formation rate and BH accretion rate among bulge-dominated galaxies provides such a chance, as it enables an estimate of the BHAD from the star-formation histories (SFHs) of lower-redshift objects. Using the CANDELS Lyman-$alpha$ Emission At Reionization (CLEAR) survey, we model the SFHs for a sample of 108 bulge-dominated galaxies at $z=$0.7-1.5, and further estimate the BHAD contributed by their high-$z$ progenitors. The predicted BHAD at $zapprox 4$-5 is consistent with the simulation-predicted values, but higher than the X-ray measurements (by $approx$3-10 times at $z=$4-5). Our result suggests that the current X-ray surveys could be missing many heavily obscured Compton-thick active galactic nuclei (AGNs) at high redshifts. However, this BHAD estimation assumes that the high-$z$ progenitors of our $z=$0.7-1.5 sample remain bulge-dominated where star formation is correlated with BH cold-gas accretion. Alternatively, our prediction could signify a stark decline in the fraction of bulges in high-$z$ galaxies (with an associated drop in BH accretion). JWST and Origins will resolve the discrepancy between our predicted BHAD and the X-ray results by constraining Compton-thick AGN and bulge evolution at high redshifts.
Galaxy clusters trace the highest density peaks in the large-scale structure of the Universe. Their clustering provides a powerful probe that can be exploited in combination with cluster mass measurements to strengthen the cosmological constraints provided by cluster number counts. We investigate the spatial properties of a homogeneous sample of X-ray selected galaxy clusters from the XXL survey, the largest programme carried out by the XMM-Newton satellite. The measurements are compared to $Lambda$-cold dark matter predictions, and used in combination with self-calibrated mass scaling relations to constrain the effective bias of the sample, $b_{eff}$, and the matter density contrast, $Omega_{rm M}$. We measured the angle-averaged two-point correlation function of the XXL cluster sample. The analysed catalogue consists of $182$ X-ray selected clusters from the XXL second data release, with median redshift $langle z rangle=0.317$ and median mass $langle M_{500} ranglesimeq1.3cdot10^{14} M_odot$. A Markov chain Monte Carlo analysis is performed to extract cosmological constraints using a likelihood function constructed to be independent of the cluster selection function. Modelling the redshift-space clustering in the scale range $10<r,[$Mpch$]<40$, we obtain $Omega_{rm M}=0.27_{-0.04}^{+0.06}$ and $b_{eff}=2.73_{-0.20}^{+0.18}$. This is the first time the two-point correlation function of an X-ray selected cluster catalogue at such relatively high redshifts and low masses has been measured. The XXL cluster clustering appears fully consistent with standard cosmological predictions. The analysis presented in this work demonstrates the feasibility of a cosmological exploitation of the XXL cluster clustering, paving the way for a combined analysis of XXL cluster number counts and clustering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا