No Arabic abstract
MINOS is an accelerator neutrino oscillation experiment at Fermilab. An intense high energy neutrino beam is produced at Fermilab and sent to a near detector on the Fermilab site and also to a 5 kTon far detector 735 km away in the Soudan mine in northern Minnesota. The experiment has now had several years of running with millions of events in the near detector and hundreds of events recorded in the far detector. I will report on the recent results from this experiment which include precise measurement of $|Delta m^2_{32}|$, ~analysis of neutral current data to limit the component of sterile neutrinos, and the search for $ u_mu to u_e$ conversion. The focus will be on the analysis of data for $ u_mu to u_e$ conversion. Using data from an exposure of $3.14times 10^{20}$ protons on target, we have selected electron type events in both the near and the far detector. The near detector is used to measure the background which is extrapolated to the far detector. We have found 35 events in the signal region with a background expectation of $27pm 5(stat)pm 2(syst)$. Using this observation we set a 90% C.L. limit of $sin^2 2 theta_{13} < 0.29$ for $delta_{cp} = 0$ and normal mass hierarchy. Further analysis is under way to reduce backgrounds and improve sensitivity.
The MINOS experiment took data for seven years between May 2005 and April 2012. Since then it has been reborn as the new MINOS+ experiment in the upgraded medium energy NuMI beam and started taking data in September 2013. An update to the MINOS standard oscillations three-flavour disappearance analysis is presented which includes 28% more atmospheric neutrino data. This combined three-flavour analysis calculates an atmospheric parameter best-fit point of $Delta m_{32}^{2}=2.37^{+0.11}_{-0.07} times 10^{-3}$~eV$^{2}$ and $sin^{2}theta_{23}=0.43^{+0.19}_{-0.05}$ for the inverted hierarchy, for which the MINOS fit shows a slight preference. A first look at the new MINOS+ beam data is presented. The new data is consistent with the combined three-flavour analysis. Finally, new MINOS results for the search for sterile neutrinos using neutrino disappearance are shown which cut out a significant amount of the allowed phase space for a sterile neutrino to exist.
We report the recent results of a search for the decay B- --> tau- anti-nu_tau, observations of new resonances X, Y and Z, and the first results from Upsilon(5S) data collected with the Belle detector at KEKB e+e- collider.
A summary of recent results from ZEUS is presented. New ZEUS results from HERA-1 data include Structure Functions, QCD fits, analysis of hadronic final states, precision measurements of alpha_s, production of heavy flavor mesons and baryons and studies of diffraction. Results from the new HERA-II running include the measurement of the cross section for polarized charged current events and charm events tagged with the new ZEUS vertex detector.
The MINOS experiment is a long-baseline neutrino experiment designed to study neutrino behaviour, in particular the phenomenon of neutrino oscillations. MINOS sends the NuMI neutrino beam through two detectors, a Near Detector 1 km downstream from the beam source at Fermilab, and a Far Detector 735 km away in the Soudan Mine in Minnesota. MINOS has been taking beam data since 2005. This document summarises recent neutrino oscillations results, with particular emphasis on electron neutrino appearance, which probes the angle $theta_{13}$ of the neutrino mass mixing matrix. For an exposure of 8.2$times 10^{20}$ protons on target, MINOS finds that $sin^{2}(2theta_{13})<0.12$ for the normal mass hierarchy, and $<0.20$ for the inverted mass hierarchy at the 90% C.L., if the CP-violating phase $delta=0$.
Recent results from a rare kaon decay experiment E787 at the BNL-AGS on K^+ to pi^+ u bar u, K^+ to mu^+ u gamma, and K^+ to pi^+ pi^0 gamma decays are reported.