No Arabic abstract
The detection of Earth-skimming tau neutrinos has turned into a very promising strategy for the observation of UHE cosmic neutrinos. The sensitivity of this channel crucially depends on the parameters of the propagation of the tau neutrino (and the tau lepton) through the terrestrial crust, which governs the flux of emerging tau leptons that can be detected. This propagation problem is usually treated in a simplified framework where several effects are neglected, e.g. the possibility of multiple regenerations of the tau neutrino, the weak interactions of the tau lepton, as well as the stochastic nature of its energy losses. We discuss here the validity of such approximations by studying the propagation in standard rock of tau leptons and neutrinos with both mono-energetic and power-law spectra. We also investigate the impact of such simplifications in non-standard scenarios for the neutrino-nucleon interactions as well as for the tau energy losses.
We consider propagation of high energy earth-skimming taus produced in interactions of astrophysical tau neutrinos. For astrophysical tau neutrinos we take generic power-law flux, $E^{-2}$ and the cosmogenic flux initiated by the protons. We calculate tau energy loss in several approaches, such as dipole models and the phenomenological approach in which parameterization of the $F_2$ is used. We evaluate the tau neutrino charged-current cross section using the same approaches for consistency. We find that uncertainty in the neutrino cross section and in the tau energy loss partially compensate giving very small theoretical uncertainty in the emerging tau flux for distances ranging from $2$ km to $100$ km and for the energy range between $10^6$ GeV and $10^{11}$ GeV, focusing on energies above $10^8$ GeV. When we consider uncertainties in the neutrino cross section, inelasticity in neutrino interactions and the tau energy loss, which are not correlated, i.e. they are not all calculated in the same approach, theoretical uncertainty ranges from about $30%$ and $60 %$ at $10^8$ GeV to about factors of 3.3 and 3.8 at $10^{11}$ GeV for the $E^{-2}$ flux and the cosmogenic flux, respectively, for the distance of 10 km rock. The spread in predictions significantly increases for much larger distances, e.g., $sim 1,000$ km. Most of the uncertainty comes from the treatment of photonuclear interactions of the tau in transit through large distances. We also consider Monte Carlo calculation of the tau propagation and we find that the result for the emerging tau flux is in agreement with the result obtained using analytic approach. Our results are relevant to several experiments that are looking for skimming astrophysical taus, such as the Pierre Auger Observatory, HAWC and Ashra. We evaluate the aperture for the Auger and discuss briefly application to the the other two experiments.
Cosmic neutrinos above a PeV are produced either within astrophysical sources or when ultra-high energy cosmic rays interact in transit through the cosmic background radiation. Detection of these neutrinos will be essential for understanding cosmic ray acceleration, composition and source evolution. By using the Earth as a tau neutrino converter for upward-going extensive air showers from tau decays, balloon-borne and space-based instruments can take advantage of a large volume and mass of the terrestrial neutrino target. The theoretical inputs and uncertainties in determining the tau lepton exit probabilities and their translation to detection acceptance will be discussed in the context of a new calculation we have performed. We quantify the experimental detection capability based on our calculation, including using the Probe of Extreme Multi-Messenger Astrophysics (POEMMA) concept study response parameters for optical air Cherenkov detection. These case studies are used to illustrate the features and uncertainties in upward tau air shower detection.
Gamma-ray bursts (GRBs) are expected to provide a source of ultra high energy cosmic rays, accompanied with potentially detectable neutrinos at neutrino telescopes. Recently, IceCube has set an upper bound on this neutrino flux well below theoretical expectation. We investigate whether this mismatch between expectation and observation can be due to neutrino decay. We demosntrate the phenomenological consistency and theoretical plausibility of the neutrino decay hypothesis. A potential implication is the observability of majoron-emitting neutrinoless double beta decay.
The IceCube collaboration has recently announced the discovery of ultra-high energy neutrino events. These neutrinos can be used to probe their production source, as well as leptonic mixing parameters. In this work, we have used the first IceCube data to constrain the leptonic CP violating phase $delta_{cp}$. For this, we have analyzed the data in the form of flux ratios. We find that the fit to $delta_{cp}$ depends on the assumptions made on the production mechanism of these astrophyscial neutrinos. Consequently, we also use this data to impose constraints on the sources of the neutrinos.
Interest in light dark matter candidates has recently increased in the literature; some of these works consider the role of additional neutrinos, either active or sterile. Furthermore, extragalactic neutrinos have been detected with energies higher than have ever been reported before. This opens a new window of opportunities to the study of neutrino properties that were unreachable up to now. We investigate how an interaction potential between neutrinos and dark matter might induce a resonant enhancement in the oscillation probability, an effect that may be tested with future neutrino data.