Do you want to publish a course? Click here

Photoluminescence clamping with few excitons in a single-walled carbon nanotube

349   0   0.0 ( 0 )
 Added by Elsa Xiao
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single air-suspended carbon nanotubes (length 2 - 5 microns) exhibit high optical quantum efficiency (7 - 20%) for resonant pumping at low intensities. Under ultrafast excitation, the photoluminescence dramatically saturates for very low injected exciton numbers (2 to 6 excitons per pulse per SWCNT). This PL clamping is attributed to highly efficient exciton-exciton annihilation over micron length scales. Stochastic modeling of exciton dynamics and femtosecond excitation correlation spectroscopy allow determination of nanotube absorption (2 - 6%) and exciton lifetime (85 +- 20 ps).



rate research

Read More

We study the photoabsorption properties of photoactive bulk polymer/ fullerene/nanotube heterojunctions in the near-infrared region. By combining pump-probe spectroscopy and linear response time-dependent density functional theory within the random phase approximation (TDDFT-RPA) we elucidate the excited state dynamics of the $E_{11}$ transition within (6,5) and (7,5) single-walled carbon nanotubes (SWNTs) and combined with poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C$_{61}$-butyric acid methyl ester (PCBM) in P3HT/PCBM/SWNT blended samples. We find the presence of a photoinduced absorption (PA) peak is related mainly to the width of the photobleach (PB) peak and the charge carrier density of the SWNT system. For mixed SWNT samples, the PB peak is too broad to observe the PA peak, whereas within P3HT/PCBM/SWNT blended samples P3HT acts as a hole acceptor, narrowing the PB peak by exciton delocalization, which reveals a PA peak. Our results suggest that the PA peak originates from a widening of the band gap in the presence of excited electrons and holes. These results have important implications for the development of new organic photovoltaic heterojunctions including SWNTs.
Using the first-principles spin density functional approach, we have studied magnetism of a new type of all-carbon nanomaterials, i.e., the carbon nanowires inserted into the single-walled carbon nanotubes. It is found that if the 1D carbon nanowire density is not too higher, the ferromagnetic ground state will be more stable than the antiferromagnetic one, which is caused by weak coupling between the 1D carbon nanowire and the single-walled carbon nanotube. Also, both dimerization of the carbon nanowire and carbon vacancy on the tube-wall are found to enhance the magnetic moment of the composite.
108 - A.V. Dolbin 2008
The linear coefficient of the radial thermal expansion has been measured on a system of SWNT bundles in an interval of 2.2 - 120K. The measurement was performed using a dilatometer with a sensitivity of 2*10-9 cm. The cylindrical sample 7 mm high and 10 mm in diameter was obtained by compressing powder. The resulting bundles of the nanotubes were oriented perpendicular to the sample axis. The starting powder contained over 90% of SWNTs with the outer diameter 1.1 nm, the length varying within 5-30 um.
The structural, electronic, optical and vibrational properties of the collapsed (10,10) single-walled carbon nanotube bundle under hydrostatic pressure have been studied by the first-principles calculations. Some features are observed in the present study: First, a collapsed structure is found, which is distinct from both of the herringbone and parallel structures obtained previously. Secondly, a pseudo-gap induced by the collapse appears along the symmetry axis textit{$Gamma $X}. Thirdly, the relative orientation between the collapsed tubes has an important effect on their electronic, optical and vibrational properties, which provides an efficient experimental method to distinguish unambiguously three different collapsed structures.
We have calculated the binding energy of various nucleobases (guanine (G), adenine (A), thymine (T) and cytosine (C)) with (5,5) single-walled carbon nanotubes (SWNTs) using ab-initio Hartre-Fock method (HF) together with force field calculations. The gas phase binding energies follow the sequence G $>$ A $>$ T $>$ C. We show that main contribution to binding energy comes from van-der Wall (vdW) interaction between nanotube and nucleobases. We compare these results with the interaction of nucleobases with graphene. We show that the binding energy of bases with SWNTs is much lower than the graphene but the sequence remains same. When we include the effect of solvation energy (Poisson-Boltzman (PB) solver at HF level), the binding energy follow the sequence G $>$ T $>$ A $>$ C $>$, which explains the experimentcite{zheng} that oligonucleotides made of thymine bases are more effective in dispersing the SWNT in aqueous solution as compared to poly (A) and poly (C). We also demonstrate experimentally that there is differential binding affinity of nucleobases with the single-walled carbon nanotubes (SWNTs) by directly measuring the binding strength using isothermal titration (micro) calorimetry. The binding sequence of the nucleobases varies as thymine (T) $>$ adenine (A) $>$ cytosine (C), in agreement with our calculation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا