We prove the existence of a minimal (all leaves dense) foliation of codimension one, on every closed manifold of dimension at least 4 whose Euler characteristic is null, in every homotopy class of hyperplanes distributions, in every homotopy class of Haefliger structures, in every differentiability class, under the obvious embedding assumption. The proof uses only elementary means, and reproves Thurstons existence theorem in all dimensions. A parametric version is also established.