Do you want to publish a course? Click here

Realizations of BC_r graded intersection matrix algebras with grading subalgebras of type B_r, $r geq 3$

68   0   0.0 ( 0 )
 Added by Sandeep Bhargava
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We study intersection matrix algebras im(A^d) that arise from affinizing a Cartan matrix A of type B_r with d arbitrary long roots in the root system $Delta_{B_r}$, where $r geq 3$. We show that im(A^d) is isomorphic to the universal covering algebra of $so_{2r+1}(a,eta,C,chi)$, where $a$ is an associative algebra with involution $eta$, and $C$ is an $a$-module with hermitian form $chi$. We provide a description of all four of the components $a$, $eta$, $C$, and $chi$.



rate research

Read More

102 - Wende Liu , Qi Wang 2013
The purpose of this paper is to determine all maximal graded subalgebras of the four infinite series of finite-dimensional graded Lie superalgebras of odd Cartan type over an algebraically closed field of characteristic $p>3$. All maximal graded subalgebras consist of three types (MyRoman{1}), (MyRoman{2}) and (MyRoman{3}). Maximal graded subalgebras of type (MyRoman{3}) fall into reducible maximal graded subalgebras and irreducible maximal graded subalgebras. In this paper we classify maximal graded subalgebras of types (MyRoman{1}), (MyRoman{2}) and reducible maximal g raded subalgebras.The classification of irreducible maximal graded subalgebras is reduced to that of the irreducible maximal subalgebras of the classical Lie superalgebra $mathfrak{p}(n)$.
We present the classification of a subclass of $n$-dimensional naturally graded Zinbiel algebras. This subclass has the nilindex $n-3$ and the characteristic sequence $(n-3,2,1).$ In fact, this result completes the classification of naturally graded Zinbiel algebras of nilindex $n-3.$
In this paper we initiate the study of the maximal subalgebras of exceptional simple classical Lie algebras g over algebraically closed fields k of positive characteristic p, such that the prime characteristic is good for g. In this paper we deal with what is surely the most unnatural case; that is, where the maximal subalgebra in question is a simple subalgebra of non-classical type. We show that only the first Witt algebra can occur as a subalgebra of g and give explicit details on when it may be maximal in g.
388 - Tara Brough , Bettina Eick 2015
We investigate the graded Lie algebras of Cartan type $W$, $S$ and $H$ in characteristic 2 and determine their simple constituents and some exceptional isomorphisms between them. We also consider the graded Lie algebras of Cartan type $K$ in characteristic 2 and conjecture that their simple constituents are isomorphic to Lie algebras of type $H$.
The present paper is devoted to the investigation of properties of Cartan subalgebras and regular elements in Leibniz $n$-algebras. The relationship between Cartan subalgebras and regular elements of given Leibniz $n$-algebra and Cartan subalgebras and regular elements of the corresponding factor $n$-Lie algebra is established.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا