Do you want to publish a course? Click here

Low-momentum NN interactions and all-order summation of ring diagrams of symmetric nuclear matter

158   0   0.0 ( 0 )
 Added by Lai-Wa Siu
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We study the equation of state for symmetric nuclear matter using a ring-diagram approach in which the particle-particle hole-hole ($pphh$) ring diagrams within a momentum model space of decimation scale $Lambda$ are summed to all orders. The calculation is carried out using the renormalized low-momentum nucleon-nucleon (NN) interaction $V_{low-k}$, which is obtained from a bare NN potential by integrating out the high-momentum components beyond $Lambda$. The bare NN potentials of CD-Bonn, Nijmegen and Idaho have been employed. The choice of $Lambda$ and its influence on the single particle spectrum are discussed. Ring-diagram correlations at intermediate momenta ($ksimeq$ 2 fm$^{-1}$) are found to be particularly important for nuclear saturation, suggesting the necessity of using a sufficiently large decimation scale so that the above momentum region is not integrated out. Using $V_{low-k}$ with $Lambda sim 3$ fm$^{-1}$, we perform a ring-diagram computation with the above potentials, which all yield saturation energies $E/A$ and Fermi momenta $k_F^{(0)}$ considerably larger than the empirical values. On the other hand, similar computations with the medium-dependent Brown-Rho scaled NN potentials give satisfactory results of $E/A simeq -15$ MeV and $k_F^{(0)}simeq 1.4$ fm$^{-1}$. The effect of this medium dependence is well reproduced by an empirical 3-body force of the Skyrme type.



rate research

Read More

We study neutron matter at and near the unitary limit using a low-momentum ring diagram approach. By slightly tuning the meson-exchange CD-Bonn potential, neutron-neutron potentials with various $^1S_0$ scattering lengths such as $a_s=-12070fm$ and $+21fm$ are constructed. Such potentials are renormalized with rigorous procedures to give the corresponding $a_s$-equivalent low-momentum potentials $V_{low-k}$, with which the low-momentum particle-particle hole-hole ring diagrams are summed up to all orders, giving the ground state energy $E_0$ of neutron matter for various scattering lengths. At the limit of $a_sto pm infty$, our calculated ratio of $E_0$ to that of the non-interacting case is found remarkably close to a constant of 0.44 over a wide range of Fermi-momenta. This result reveals an universality that is well consistent with the recent experimental and Monte-Carlo computational study on low-density cold Fermi gas at the unitary limit. The overall behavior of this ratio obtained with various scattering lengths is presented and discussed. Ring-diagram results obtained with $V_{low-k}$ and those with $G$-matrix interactions are compared.
86 - B.Krippa 2000
The effective chiral theory of the in-medium NN interactions is considered. The shallow bound states, which complicate the effective field theory analysis in vacuum do not exist in matter. We show that the next-to-leading order terms in the chiral expansion of the effective Lagrangian can be interpreted as corrections so that the expansion is systematic. The Low Energy Effective Constants of this Lagrangian are found to satisfy the concept of naturalness. The potential energy per particle is calculated. The problems and challenges in constructing the chiral theory of nuclear matter are outlined.
We investigate the thermodynamic equation of state of isospin-symmetric nuclear matter with microscopic nuclear forces derived within the framework of chiral effective field theory. Two- and three-body nuclear interactions constructed at low resolution scales form the basis for a perturbative calculation of the finite-temperature equation of state. The nuclear force models and many-body methods are benchmarked against bulk properties of isospin-symmetric nuclear matter at zero temperature, which are found to be well reproduced when chiral nuclear interactions constructed at the lowest resolution scales are employed. The calculations are then extended to finite temperatures, where we focus on the liquid-gas phase transition and the associated critical point. The Maxwell construction is applied to construct the physical equation of state, and the value of the critical temperature is determined to be T_c =17.2-19.1 MeV, in good agreement with the value extracted from multifragmentation reactions of heavy ions.
169 - B.Krippa 1999
The effective field theory of NN interactions in nuclear matter is considered. Due to the Pauli principle the effective NN amplitude is not affected by the shallow bound states. We show that the next-to-leading order terms in the chiral expansion of the effective NN potential can be interpreted as corrections so the expansion is systematic. The value of potential energy per particle is calculated and some issues concerning the chiral effective theory of nuclear matter are outlined.
The nuclear symmetry energy is a key quantity in nuclear (astro)physics. It describes the isospin dependence of the nuclear equation of state (EOS), which is commonly assumed to be almost quadratic. In this work, we confront this standard quadratic expansion of the EOS with explicit asymmetric nuclear-matter calculations based on a set of commonly used Hamiltonians including two- and three-nucleon forces derived from chiral effective field theory. We study, in particular, the importance of non-quadratic contributions to the symmetry energy, including the non-analytic logarithmic term introduced by Kaiser [Phys.~Rev.~C textbf{91}, 065201 (2015)]. Our results suggest that the quartic contribution to the symmetry energy can be robustly determined from the various Hamiltonians employed, and we obtain 1.00(8) MeV (or 0.55(8) MeV for the potential part) at saturation density, while the logarithmic contribution to the symmetry energy is relatively small and model-dependent. We finally employ the meta-model approach to study the impact of the higher-order contributions on the neutron-star crust-core transition density, and find a small 5% correction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا