No Arabic abstract
We treat the effects of compactified spatial dimensions on the propagation of light in the uncompactified directions in the context of linearized quantum gravity. We find that the flight times of pulses can fluctuate due to modification of the graviton vacuum by the compactification. In the case of a five dimensional Kaluza-Klein theory, the mean variation in flight time can grow logarithmically with the flight distance. This effect is in principle observable, but too small to serve as a realistic probe of the existence of extra dimensions. We also examine the effect of the compactification on the widths of spectral lines, and find that there is a small line narrowing effect. This effect is also small for compactification well above the Planck scale, but might serve as a test of the existence of extra dimensions.
We study the free motion of a massive particle moving in the background of a Finslerian deformation of a plane gravitational wave in Einsteins General Relativity. The deformation is a curved version of a one-parameter family of Relativistic Finsler structures introduced by Bogoslovsky, which are invariant under a certain deformation of Cohen and Glashows Very Special Relativity group ISIM(2). The partially broken Carroll Symmetry we derive using Baldwin-Jeffery-Rosen coordinates allows us to integrate the geodesics equations. The transverse coordinates of timelike Finsler-geodesics are identical to those of the underlying plane gravitational wave for any value of the Bogoslovsky-Finsler parameter $b$. We then replace the underlying plane gravitational wave by a homogenous pp-wave solution of the Einstein-Maxwell equations. We conclude by extending the theory to the Finsler-Friedmann-Lemaitre model.
It is shown that the free motion of massive particles moving in static spacetimes are given by the geodesics of an energy-dependent Riemannian metric on the spatial sections analogous to Jacobis metric in classical dynamics. In the massless limit Jacobis metric coincides with the energy independent Fermat or optical metric. For stationary metrics, it is known that the motion of massless particles is given by the geodesics of an energy independent Finslerian metric of Randers type. The motion of massive particles is governed by neither a Riemannian nor a Finslerian metric. The properies of the Jacobi metric for massive particles moving outside the horizon of a Schwarschild black hole are described. By constrast with the massless case, the Gaussian curvature of the equatorial sections is not always negative.
Weakly nonlinear dynamics in anti-de Sitter (AdS) spacetimes is reviewed, keeping an eye on the AdS instability conjecture and focusing on the resonant approximation that accurately captures in a simplified form the long-term evolution of small initial data. Topics covered include turbulent and regular motion, dynamical recurrences analogous to the Fermi-Pasta-Ulam phenomena in oscillator chains, and relations between AdS dynamics and nonrelativistic nonlinear Schrodinger equations in harmonic potentials. Special mention is given to the way the classical dynamics of weakly nonlinear strongly resonant systems is illuminated by perturbative considerations within the corresponding quantum theories, in particular, in relation to quantum chaos theory.
We discuss several aspects of quantum field theory of a scalar field in a Friedmann universe, clarifying and highlighting several conceptual and technical issues. (A) We show that one can map the dynamics of (1) a massless scalar field in a universe with power law expansion to (2) a massive scalar field in the de Sitter spacetime, which allows us to understand several features of either system and clarifies several issues related to the massless limit. (B) We obtain a useful integral representation for the Euclidean Greens function for the de Sitter spacetime, by relating it to the solution of a hypothetical electrostatic problem in five dimensions. This is helpful in the study of several relevant limits. (C) We recover that in any Friedmann universe, sourced by a negative pressure fluid, the Wightman function for a massless scalar field is divergent. This shows that the divergence of Wightman function for the massless field in the de Sitter spacetime is just a special, limiting, case of this general phenomenon. (D) We provide a generally covariant procedure for defining the power spectrum of vacuum fluctuations in terms of the different Killing vectors present in the spacetime. This allows one to study the interplay of the choice of vacuum state and the nature of the power spectrum in different coordinate systems, in the de Sitter universe, in a unified manner. (Truncated Abstract; see the paper for full Abstract.)
We present the explicit metric forms for higher dimensional vanishing scalar invariant (VSI) Lorentzian spacetimes. We note that all of the VSI spacetimes belong to the higher dimensional Kundt class. We determine all of the VSI spacetimes which admit a covariantly constant null vector, and we note that in general in higher dimensions these spacetimes are of Ricci type III and Weyl type III. The Ricci type N subclass is related to the chiral null models and includes the relativistic gyratons and the higher dimensional pp-wave spacetimes. The spacetimes under investigation are of particular interest since they are solutions of supergravity or superstring theory.