Do you want to publish a course? Click here

Measuring the Neutron Lifetime Using Magnetically Trapped Neutrons

383   0   0.0 ( 0 )
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

The neutron beta-decay lifetime plays an important role both in understanding weak interactions within the framework of the Standard Model and in theoretical predictions of the primordial abundance of 4He in Big Bang Nucleosynthesis. In previous work, we successfully demonstrated the trapping of ultracold neutrons (UCN) in a conservative potential magnetic trap. A major upgrade of the apparatus is nearing completion at the National Institute of Standards and Technology Center for Neutron Research (NCNR). In our approach, a beam of 0.89 nm neutrons is incident on a superfluid 4He target within the minimum field region of an Ioffe-type magnetic trap. A fraction of the neutrons is downscattered in the helium to energies <200 neV, and those in the appropriate spin state become trapped. The inverse process is suppressed by the low phonon density of helium at temperatures less than 200 mK, allowing the neutron to travel undisturbed. When the neutron decays the energetic electron ionizes the helium, producing scintillation light that is detected using photomultiplier tubes. Statistical limitations of the previous apparatus will be alleviated by significant increases in field strength and trap volume resulting in twenty times more trapped neutrons.



rate research

Read More

Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.
The neutron lifetime is important in understanding the production of light nuclei in the first minutes after the big bang and it provides basic information on the charged weak current of the standard model of particle physics. Two different methods have been used to measure the neutron lifetime: disappearance measurements using bottled ultracold neutrons and decay rate measurements using neutron beams. The best measurements using these two techniques give results that differ by nearly 4 standard deviations. In this paper we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons that provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. We present results obtained using our method.
In a variety of neutron lifetime experiments, in addition to $beta-$decay, neutrons can be lost by other mechanisms including wall losses. Failure to account for these other loss mechanisms produces systematic measurement error and associated systematic uncertainties in neutron lifetime measurements. In this work, we develop a physical model for neutron wall losses and construct a competing risks survival analysis model to account for losses due to the joint effect of $beta-$decay losses, wall losses of marginally trapped neutrons, and an additional absorption mechanism. We determine the survival probability function associated with the wall loss mechanism by a Monte Carlo method. Based on a fit of the competing risks model to a subset of the NIST experimental data, we determine the mean lifetime of trapped neutrons to be approximately 700 s -- considerably less than the current best estimate of (880.1 $pm$ 1.1) s promulgated by the Particle Data Group [1]. Currently, experimental studies are underway to determine if this discrepancy can be explained by neutron capture by ${}^3$He impurities in the trapping volume. Analysis of the full NIST data will be presented in a later publication.
Neutron lifetime is one of the most important physical constants which determines parameters of the weak interaction and predictions of primordial nucleosynthesis theory. There remains the unsolved problem of a 3.9{sigma} discrepancy between measurements of this lifetime using neutrons in beams and those with stored neutrons (UCN). In our experiment we measure the lifetime of neutrons trapped by Earths gravity in an open-topped vessel. Two configurations of the trap geometry are used to change the mean frequency of UCN collisions with the surfaces - this is achieved by plunging an additional surface into the trap without breaking the vacuum. The trap walls are coated with a hydrogen-less fluorine-containing polymer to reduce losses of UCN. The stability of this coating to multiple thermal cycles between 80 K and 300 K was tested. At 80 K, the probability of UCN loss due to collisions with the trap walls is just 1.5% of the probability of beta-decay. The free neutron lifetime is determined by extrapolation to an infinitely large trap with zero collision frequency. The result of these measurements is 881.5 +/- 0.7_stat +/- 0.6_syst s which is consistent with the conventional value of 880.2 +/- 1.0 s presented by the Particle Data Group. Future prospects for this experiment are in further cooling to 10 K which will lead to an improved accuracy of measurement. In conclusion we present an analysis of currently-available data on various measurements of the neutron lifetime.
255 - K. Hirota , G. Ichikawa , S. Ieki 2020
The neutron lifetime has been measured by comparing the decay rate with the reaction rate of $^3$He nuclei of a pulsed neutron beam from the spallation neutron source at the Japan Proton Accelerator Research Complex (J-PARC). The decay rate and the reaction rate were determined by simultaneously detecting electrons from the neutron decay and protons from the $^3$He(n,p)$^3$H reaction using a gas chamber of which working gas contains diluted $^3$He. The measured neutron lifetime was $898,pm,10,_{rm stat},^{+15}_{-18},_{rm sys},$s.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا