No Arabic abstract
The excitation and subsequent proton decay of the isoscalar giant dipole resonance (ISGDR) in $^{208}$Pb have been investigated via the $^{208}$Pb($alpha, alpha^{prime}p)^{207}$Tl reaction at 400 MeV. Excitation of the ISGDR has been identified by the difference-of-spectra method. The enhancement of the ISGDR strength at high excitation energies observed in the multipole-decomposition-analysis of the singles $^{208}$Pb($alpha,alpha^{prime}$) spectra is not present in the excitation energy spectrum obtained in coincidence measurement. The partial branching ratios for direct proton decay of ISGDR to low-lying states of $^{207}$Tl have been determined and the results are compared with predictions of continuum random-phase-approximation (CRPA) calculations.
Proton decay from the 3$hbaromega$ isoscalar giant dipole resonance (ISGDR) in $^{58}$Ni has been measured using the ($alpha,alphap$) reaction at a bombarding energy of 386 MeV to investigate its decay properties. We have extracted the ISGDR strength under the coincidence condition between inelastically scattered $alpha$ particles at forward angles and decay protons emitted at backward angles. Branching ratios for proton decay to low-lying states of $^{57}$Co have been determined, and the results compared to predictions of recent continuum-RPA calculations. The final-state spectra of protons decaying to the low-lying states in $^{57}$Co were analyzed for a more detailed understanding of the structure of the ISGDR. It is found that there are differences in the structure of the ISGDR as a function of excitation energy.
The isoscalar giant dipole resonance (ISGDR) has been investigated in 208Pb using inelastic scattering of 400 MeV alpha particles at forward angles, including 0deg. Using the superior capabilities of the Grand Raiden spectrometer, it has been possible to obtain spectra devoid of any instrumental background. The ISGDR strength distribution has been extracted from a multipole-composition of the observed spectra. The implication of these results on the experimental value of nuclear incompressibility are discussed.
Scattering of protons of several hundred MeV is a promising new spectroscopic tool for the study of electric dipole strength in nuclei. A case study of 208Pb shows that at very forward angles J^pi = 1- states are strongly populated via Coulomb excitation. A separation from nuclear excitation of other modes is achieved by a multipole decomposition analysis of the experimental cross sections based on theoretical angular distributions calculated within the quasiparticle-phonon model. The B(E1) transition strength distribution is extracted for excitation energies up to 9 MeV, i.e., in the region of the so-called pygmy dipole resonance (PDR). The Coulomb-nuclear interference shows sensitivity to the underlying structure of the E1 transitions, which allows for the first time an experimental extraction of the electromagnetic transition strength and the energy centroid of the PDR.
The strength distribution of the isoscalar giant dipole resonance (ISGDR) in $^{58}$Ni has been obtained over the energy range 10.5--49.5 MeV via extreme forward angle scattering (including 0$^{circ}$) of 386 MeV $alpha$ particles. We observe a ``bi-modal ${E1}$ strength distribution for the first time in an A $<$ 90 nucleus. The observed ISGDR strength distribution is in good agreement with the predictions of a recent QRPA calculation.
Experiments investigating the fine structure of the IsoScalar Giant Monopole Resonance (ISGMR) of 48Ca were carried out with a 200 MeV alpha inelastic-scattering reaction, using the high energy-resolution capability and the zero-degree setup at the K600 magnetic spectrometer of iThemba LABS, Cape Town, South Africa. Considerable fine structure is observed in the energy region of the ISGMR. Characteristic energy scales are extracted from the experimental data by means of a wavelet analysis and compared with the state-of-the-art theoretical calculations within a Skyrme-RPA (random phase approximation) approach using the finite-rank separable approximation with the inclusion of phonon-phonon coupling (PPC). Good agreement was observed between the experimental data and the theoretical predictions.