Do you want to publish a course? Click here

Pullback Attractors for Non-autonomous Reaction-Diffusion Equations on R^n

189   0   0.0 ( 0 )
 Added by Bixiang Wang
 Publication date 2009
  fields
and research's language is English
 Authors Bixiang Wang




Ask ChatGPT about the research

We study the long time behavior of solutions of the non-autonomous Reaction-Diffusion equation defined on the entire space R^n when external terms are unbounded in a phase space. The existence of a pullback global attractor for the equation is established in L^2(R^n) and H^1(R^n), respectively. The pullback asymptotic compactness of solutions is proved by using uniform a priori estimates on the tails of solutions outside bounded domains.



rate research

Read More

199 - Bixiang Wang 2008
The existence of a pullback attractor is established for the singularly perturbed FitzHugh-Nagumo system defined on the entire space $R^n$ when external terms are unbounded in a phase space. The pullback asymptotic compactness of the system is proved by using uniform a priori estimates for far-field values of solutions. Although the limiting system has no global attractor, we show that the pullback attractors for the perturbed system with bounded external terms are uniformly bounded, and hence do not blow up as a small parameter approaches zero.
In this article we study the asymptotic behavior of solutions, in sense of global pullback attractors, of the evolution system $$ begin{cases} u_{tt} +etaDelta^2 u+a(t)Deltatheta=f(t,u), & t>tau, xinOmega, theta_t-kappaDelta theta-a(t)Delta u_t=0, & t>tau, xinOmega, end{cases} $$ subject to boundary conditions $$ u=Delta u=theta=0, t>tau, xinpartialOmega, $$ where $Omega$ is a bounded domain in $mathbb{R}^N$ with $Ngeqslant 2$, which boundary $partialOmega$ is assumed to be a $mathcal{C}^4$-hypersurface, $eta>0$ and $kappa>0$ are constants, $a$ is an Holder continuous function, $f$ is a dissipative nonlinearity locally Lipschitz in the second variable.
This paper is concerned with pullback attractors of the stochastic p-Laplace equation defined on the entire space R^n. We first establish the asymptotic compactness of the equation in L^2(R^n) and then prove the existence and uniqueness of non-autonomous random attractors. This attractor is pathwise periodic if the non-autonomous deterministic forcing is time periodic. The difficulty of non-compactness of Sobolev embeddings on R^n is overcome by the uniform smallness of solutions outside a bounded domain.
131 - Bixiang Wang 2012
We prove the existence and uniqueness of tempered random attractors for stochastic Reaction-Diffusion equations on unbounded domains with multiplicative noise and deterministic non-autonomous forcing. We establish the periodicity of the tempered attractors when the stochastic equations are forced by periodic functions. We further prove the upper semicontinuity of these attractors when the intensity of stochastic perturbations approaches zero.
147 - Bixiang Wang 2012
We study pullback attractors of non-autonomous non-compact dynamical systems generated by differential equations with non-autonomous deterministic as well as stochastic forcing terms. We first introduce the concepts of pullback attractors and asymptotic compactness for such systems. We then prove a sufficient and necessary condition for existence of pullback attractors. We also introduce the concept of complete orbits for this sort of systems and use these special solutions to characterize the structures of pullback attractors. For random systems containing periodic deterministic forcing terms, we show the pullback attractors are also periodic. As an application of the abstract theory, we prove the existence of a unique pullback attractor for Reaction-Diffusion equations on $R^n$ with both deterministic and random external terms. Since Sobolev embeddings are not compact on unbounded domains, the uniform estimates on the tails of solutions are employed to establish the asymptotic compactness of solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا