Do you want to publish a course? Click here

The M-sigma and M-L Relations in Galactic Bulges and Determinations of their Intrinsic Scatter

255   0   0.0 ( 0 )
 Added by Kayhan Gultekin
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive improv



rate research

Read More

The stellar mass-to-light ratio gradient in SDSS $r-$band $ abla (M_*/L_r)$ of a galaxy depends on its mass assembly history, which is imprinted in its morphology and gradients of age, metallicity, and stellar initial mass function (IMF). Taking a MaNGA sample of 2051 galaxies with stellar masses ranging from $10^9$ to $10^{12}M_odot$ released in SDSS DR15, we focus on face-on galaxies, without merger and bar signatures, and investigate the dependence of the 2D $ abla (M_*/L_r)$ on other galaxy properties, including $M_*/L_r$-colour relationships by assuming a fixed Salpeter IMF as the mass normalization reference. The median gradient is $ abla M_*/L_rsim -0.1$ (i.e., the $M_*/L_r$ is larger at the centre) for massive galaxies, becomes flat around $M_*sim 10^{10} M_{odot}$ and change sign to $ abla M_*/L_rsim 0.1$ at the lowest masses. The $M_*/L_r$ inside a half light radius increases with increasing galaxy stellar mass; in each mass bin, early-type galaxies have the highest value, while pure-disk late-type galaxies have the smallest. Correlation analyses suggest that the mass-weighted stellar age is the dominant parameter influencing the $M_*/L_r$ profile, since a luminosity-weighted age is easily affected by star formation when the specific star formation rate (sSFR) inside the half light radius is higher than $10^{-3} {rm Gyr}^{-1}$. With increased sSFR gradient, one can obtain a steeper negative $ abla (M_*/L_r)$. The scatter in the slopes of $M_*/L$-colour relations increases with increasing sSFR, for example, the slope for post-starburst galaxies can be flattened to $0.45$ from the global value $0.87$ in the $M_*/L$ vs. $g-r$ diagram. Hence converting galaxy colours to $M_*/L$ should be done carefully, especially for those galaxies with young luminosity-weighted stellar ages, which can have quite different star formation histories.
We examine the possibility that the observed relation between black-hole mass and host-galaxy stellar velocity dispersion (the M-sigma relation) is biased by an observational selection effect, the difficulty of detecting a black hole whose sphere of influence is smaller than the telescope resolution. In particular, we critically investigate recent claims that the M-sigma relation only represents the upper limit to a broad distribution of black-hole masses in galaxies of a given velocity dispersion. We find that this hypothesis can be rejected at a high confidence level, at least for the early-type galaxies with relatively high velocity dispersions (median 268 km/s) that comprise most of our sample. We also describe a general procedure for incorporating observational selection effects in estimates of the properties of the M-sigma relation. Applying this procedure we find results that are consistent with earlier estimates that did not account for selection effects, although with larger error bars. In particular, (i) the width of the M-sigma relation is not significantly increased; (ii) the slope and normalization of the M-sigma relation are not significantly changed; (iii) most or all luminous early-type galaxies contain central black holes at zero redshift. Our results may not apply to late-type or small galaxies, which are not well-represented in our sample.
We consider black hole - galaxy coevolution using simple analytic arguments. We focus on the fact that several supermassive black holes are known with masses significantly larger than suggested by the $M - {sigma}$ relation, sometimes also with rather small stellar masses. We show that these are likely to have descended from extremely compact `blue nugget galaxies born at high redshift, whose very high velocity dispersions allowed the black holes to reach unusually large masses. Subsequent interactions reduce the velocity dispersion, so the black holes lie above the usual $M - {sigma}$ relation and expel a large fraction of the bulge gas (as in WISE J104222.11+164115.3) that would otherwise make stars, before ending at low redshift as very massive holes in galaxies with relatively low stellar masses, such as NGC 4889 and NGC 1600. We further suggest the possible existence of two new types of galaxy: low-mass dwarfs whose central black holes lie below the $M - {sigma}$ relation at low redshift, and galaxies consisting of very massive ($gtrsim 10^{11}$M$_{odot}$) black holes with extremely small stellar masses. This second group would be very difficult to detect electromagnetically, but potentially offer targets of considerable interest for LISA.
We present the results of our spectropolarimetric observations for a number of active galactic nuclei (AGNs) carried out at the 6-m telescope with the SCORPIO focal reducer. The derived wavelength dependences of the polarization have been analyzed by taking into account the Faraday rotation of the polarization plane on the photon mean free path in a magnetized accretion disk. As a result, based on traditional accretion disk models, we have determined the magnetic field strength and distribution and a number of physical parameters of the accreting plasma in the region where the optical radiation is generated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا