We study the electronic states of core multi-shell semiconductor nanowires, including the effect of strong magnetic fields. We show that the multi-shell overgrowth of a free-standing nanowire, together with the prismatic symmetry of the substrate, may induce quantum confinement of carriers in a set of quasi-1D quantum channels corresponding to the nanowire edges. Localization and inter-channel tunnel coupling are controlled by the curvature at the edges and the diameter of the underlying nanowire. We also show that a magnetic field may induce either Aharonov-Bohm oscillations of the energy levels in the axial configuration, or a dimensional transition of the quantum states from quasi-1D to Landau levels for fields normal to the axis. Explicit predictions are given for nanostructures based on GaAs, InAs, and InGaN with different symmetries.