Do you want to publish a course? Click here

Bayesian component separation and CMB estimation for the 5-year WMAP temperature data

142   0   0.0 ( 0 )
 Added by Clive Dickinson PhD
 Publication date 2009
  fields Physics
and research's language is English
 Authors C. Dickinson




Ask ChatGPT about the research

A well-tested and validated Gibbs sampling code, that performs component separation and CMB power spectrum estimation, was applied to the {it WMAP} 5-yr data. Using a simple model consisting of CMB, noise, monopoles and dipoles, a ``per pixel low-frequency power-law (fitting for both amplitude and spectral index), and a thermal dust template with fixed spectral index, we found that the low-$ell$ ($ell < 50$) CMB power spectrum is in good agreement with the published {it WMAP}5 results. Residual monopoles and dipoles were found to be small ($lesssim 3 mu$K) or negligible in the 5-yr data. We comprehensively tested the assumptions that were made about the foregrounds (e.g. dust spectral index, power-law spectral index prior, templates), and found that the CMB power spectrum was insensitive to these choices. We confirm the asymmetry of power between the north and south ecliptic hemispheres, which appears to be robust against foreground modeling. The map of low frequency spectral indices indicates a steeper spectrum on average ($beta=-2.97pm0.21$) relative to those found at low ($sim$GHz) frequencies.



rate research

Read More

We develop a new Bayesian method for estimating white noise levels in CMB sky maps, and apply this algorithm to the 5-year WMAP data. We assume that the amplitude of the noise RMS is scaled by a constant value, alpha, relative to a pre-specified noise level. We then derive the corresponding conditional density, P(alpha | s, Cl, d), which is subsequently integrated into a general CMB Gibbs sampler. We first verify our code by analyzing simulated data sets, and then apply the framework to the WMAP data. For the foreground-reduced 5-year WMAP sky maps and the nominal noise levels initially provided in the 5-year data release, we find that the posterior means typically range between alpha=1.005 +- 0.001 and alpha=1.010 +- 0.001 depending on differencing assembly, indicating that the noise level of these maps are biased low by 0.5-1.0%. The same problem is not observed for the uncorrected WMAP sky maps. After the preprint version of this letter appeared on astro-ph., the WMAP team has corrected the values presented on their web page, noting that the initially provided values were in fact estimates from the 3-year data release, not from the 5-year estimates. However, internally in their 5-year analysis the correct noise values were used, and no cosmological results are therefore compromised by this error. Thus, our method has already been demonstrated in practice to be both useful and accurate.
We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are 1) conditional sampling of foreground spectral parameters, and 2) joint sampling of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel amplitudes, and global template amplitudes) given spectral parameters. Given a parametric model of the foreground signals, we estimate efficiently and accurately the exact joint foreground-CMB posterior distribution, and therefore all marginal distributions such as the CMB power spectrum or foreground spectral index posteriors. The main limitation of the current implementation is the requirement of identical beam responses at all frequencies, which restricts the analysis to the lowest resolution of a given experiment. We outline a future generalization to multi-resolution observations. To verify the method, we analyse simple models and compare the results to analytical predictions. We then analyze a realistic simulation with properties similar to the 3-yr WMAP data, downgraded to a common resolution of 3 degree FWHM. The results from the actual 3-yr WMAP temperature analysis are presented in a companion Letter.
We present a data analysis pipeline for CMB polarization experiments, running from multi-frequency maps to the power spectra. We focus mainly on component separation and, for the first time, we work out the covariance matrix accounting for errors associated to the separation itself. This allows us to propagate such errors and evaluate their contributions to the uncertainties on the final products.The pipeline is optimized for intermediate and small scales, but could be easily extended to lower multipoles. We exploit realistic simulations of the sky, tailored for the Planck mission. The component separation is achieved by exploiting the Correlated Component Analysis in the harmonic domain, that we demonstrate to be superior to the real-space application (Bonaldi et al. 2006). We present two techniques to estimate the uncertainties on the spectral parameters of the separated components. The component separation errors are then propagated by means of Monte Carlo simulations to obtain the corresponding contributions to uncertainties on the component maps and on the CMB power spectra. For the Planck polarization case they are found to be subdominant compared to noise.
We present a new method based on phase analysis for the Galaxy and foreground component separation from the cosmic microwave background (CMB) signal. This method is based on a prevailing assumption that the phases of the underlying CMB signal should have no or little correlation with those of the foregrounds. This method takes into consideration all the phases of each multipole mode (l <= 50, -l <= m <=l) from the whole sky without galactic cut, masks or any dissection of the whole sky into disjoint regions. We use cross correlation of the phases to illustrate that significant correlations of the foregrounds manifest themselves in the phases of the WMAP 5 frequency bands, which are used for separation of the CMB from the signals. Our final phase-cleaned CMB map has the angular power spectrum in agreement with both the WMAP result and that from Tegmark, de Oliveira-Costa and Hamilton (TOH), the phases of our derived CMB signal, however, are slightly different from those of the WMAP Internal Linear Combination map and the TOH map.
Key to any cosmic microwave background (CMB) analysis is the separation of the CMB from foreground contaminants. In this paper we present a novel implementation of Bayesian CMB component separation. We sample from the full posterior distribution using the No-U-Turn Sampler (NUTS), a gradient based sampling algorithm. Alongside this, we introduce new foreground modelling approaches. We use the mean-shift algorithm to define regions on the sky, clustering according to naively estimated foreground spectral parameters. Over these regions we adopt a complete pooling model, where we assume constant spectral parameters, and a hierarchical model, where we model individual spectral parameters as being drawn from underlying hyper-distributions. We validate the algorithm against simulations of the LiteBIRD and C-BASS experiments, with an input tensor-to-scalar ratio of $r=5times 10^{-3}$. Considering multipoles $32leqellleq 121$, we are able to recover estimates for $r$. With LiteBIRD only observations, and using the complete pooling model, we recover $r=(10pm 0.6)times 10^{-3}$. For C-BASS and LiteBIRD observations we find $r=(7.0pm 0.6)times 10^{-3}$ using the complete pooling model, and $r=(5.0pm 0.4)times 10^{-3}$ using the hierarchical model. By adopting the hierarchical model we are able to eliminate biases in our cosmological parameter estimation, and obtain lower uncertainties due to the smaller Galactic emission mask that can be adopted for power spectrum estimation. Measured by the rate of effective sample generation, NUTS offers performance improvements of $sim10^3$ over using Metropolis-Hastings to fit the complete pooling model. The efficiency of NUTS allows us to fit the more sophisticated hierarchical foreground model, that would likely be intractable with non-gradient based sampling algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا