On the Origin of Cool Core Galaxy Clusters: Comparing X-Ray Observations with Numerical Simulations


Abstract in English

To better constrain models of cool core galaxy cluster formation, we have used X-ray observations taken from the Chandra and ROSAT archives to examine the properties of cool core and non-cool core clusters, especially beyond the cluster cores. We produced X-ray images, surface brightness profiles, and hardness ratio maps of 30 nearby rich Abell clusters (17 cool cores and 13 non-cool cores). We show that the use of double beta-models with cool core surface brightness profiles and single beta-models for non-cool core profiles yield statistically significant differences in the slopes (i.e., beta values) of the outer surface brightness profiles, but similar cluster core radii, for the two types of clusters. Hardness ratio profiles as well as spectroscopically-fit temperatures suggest that non-cool core clusters are warmer than cool core clusters of comparable mass beyond the cluster cores. We compared the properties of these clusters with the results from analogously reduced simulations of 88 numerical clusters created by the AMR Enzo code. The simulated surface brightness profiles have steeper beta-model fits in the outer cluster regions for both cool cores and non-cool cores, suggesting additional ICM heating is required compared to observed cluster ICMs. Temperature and surface brightness profiles reveal that the simulated clusters are over-cooled in their cores. As in the observations, however, simulated hardness ratio and temperature profiles indicate that non-cool core clusters are warmer than cool core clusters of comparable mass far beyond the cluster cores. The general similarities between observations and simulations support a model described in Burns et al. 2008 suggesting that non-cool core clusters suffered early major mergers destroying nascent cool cores.

Download