Do you want to publish a course? Click here

The effect of metallicity on Cepheid magnitudes and the distance to M33

442   0   0.0 ( 0 )
 Added by David Bersier
 Publication date 2009
  fields Physics
and research's language is English
 Authors V. Scowcroft




Ask ChatGPT about the research

We present the results from a multi-epoch survey of two regions of M33 using the 3.5m WIYN telescope. The inner field is located close to the centre of the galaxy, with the outer region situated about 5.1 kpc away in the southern spiral arm, allowing us to sample a large metallicity range. We have data for 167 fundamental mode Cepheids in the two regions. The reddening-free Wesenheit magnitude Wvi period-luminosity relations were used to establish the distance modulus of each region, with mu_{inner} = 24.37 +- 0.02 mag and mu_{outer} = 24.54 +- 0.03 mag. The apparent discrepancy between these two results can be explained by the significant metallicity gradient of the galaxy. We determine a value for the metallicity parameter of the Period--Luminosity relation gamma = d(m-M)/d log(Z) = -0.29 +- 0.11 mag/dex, consistent with previous measurements. This leads to a metallicity corrected distance modulus to M33 of 24.53 +- 0.11 mag.



rate research

Read More

491 - J. Storm 2011
The extragalactic distance scale builds directly on the Cepheid Period-Luminosity (PL) relation as delineated by the sample of Cepheids in the Large Magellanic Cloud (LMC). However, the LMC is a dwarf irregular galaxy, quite different from the massive spiral galaxies used for calibrating the extragalactic distance scale. Recent investigations suggest that not only the zero-point but also the slope of the Milky Way PL relation differ significantly from that of the LMC, casting doubts on the universality of the Cepheid PL relation. We want to make a differential comparison of the PL relations in the two galaxies by delineating the PL relations using the same method, the infrared surface brightness method (IRSB), and the same precepts. The IRSB method is a Baade-Wesselink type method to determine individual distances to Cepheids. We apply a newly revised calibration of the method as described in an accompanying paper (Paper I) to 36 LMC and five SMC Cepheids and delineate new PL relations in the V,I,J, & K bands as well as in the Wesenheit indices in the optical and near-IR. We present 509 new and accurate radial velocity measurements for a sample of 22 LMC Cepheids, enlarging our earlier sample of 14 stars to include 36 LMC Cepheids. The new calibration of the IRSB method is directly tied to the recent HST parallax measurements to ten Milky Way Cepheids, and we find a LMC barycenter distance modulus of 18.45+-0.04 (random error only) from the 36 individual LMC Cepheid distances. We find a significant metallicity effect on the Wvi index gamma(Wvi)=-0.23+-0.10 mag/dex as well as an effect on the slope. The K-band PL relation on the other hand is found to be an excellent extragalactic standard candle being metallicity insensitive in both slope and zero-point and at the same time being reddening insensitive and showing the least internal dispersion.
Using high-quality observed period-luminosity relations in both Magellanic Clouds in VIJHKs bands and optical and near-infrared Wesenheit indices we determine the effect of metallicity on Cepheid P-L relations by comparing the relative distance between LMC and SMC as determined from the Cepheids to the distance difference between the Clouds which has been derived with very high accuracy from late-type eclipsing binary systems. Within an uncertainty of 3% which is dominated by the uncertainty on the mean metallicity difference between the Cepheid populations in LMC and SMC we find metallicity effects smaller than 2% in all bands and in the Wesenheit indices, consistent with a zero metallicity effect. This result is valid for the metallicity range from -0.35 dex to -0.75 dex corresponding to the mean [Fe/H] values for classical Cepheids in LMC and SMC, respectively. Yet most Cepheids in galaxies beyond the Local Group and located in the less crowded outer regions of these galaxies do fall into this metallicity regime, making our result important for applications to determine the distances to spiral galaxies well beyond the Local Group. Our result supports previous findings which indicated a very small metallicity effect on the near-infrared absolute magnitudes of classical Cepheids, and resolves the dispute about the size and sign of the metallicity effect in the optical spectral range. It also resolves one of the most pressing problems in the quest towards a measurement of the Hubble constant with an accuracy of 1% from the Cepheid-supernova Ia method.
Motivated by an amazing range of reported distances to the nearby Local Group spiral galaxy M33, we have obtained deep near-infrared photometry for 26 long-period Cepheids in this galaxy with the ESO VLT. From the data we constructed period-luminosity relations in the J and K bands which together with previous optical VI photometry for the Cepheids by Macri et al. were used to determine the true distance modulus of M33, and the mean reddening affecting the Cepheid sample with the multiwavelength fit method developed in the Araucaria Project. We find a true distance modulus of 24.62 for M33, with a total uncertainty of +- 0.07 mag which is dominated by the uncertainty on the photometric zero points in our photometry. The reddening is determined as E(B-V)=0.19 +- 0.02, in agreement with the value used by the HST Key Project of Freedman et al. but in some discrepancy with other recent determinations based on blue supergiant spectroscopy and an O-type eclipsing binary which yielded lower reddening values. Our derived M33 distance modulus is extremely insensitive to the adopted reddening law. We show that the possible effects of metallicity and crowding on our present distance determination are both at the 1-2% level and therefore minor contributors to the total uncertainty of our distance result for M33.
Recent estimates of the Cepheid distance modulus of NGC 6822 differ by 0.18 mag. To investigate this we present new multi-epoch JHKs photometry of classical Cepheids in the central region of NGC 6822 and show that there is a zero-point difference from earlier work. These data together with optical and mid-infrared observations from the literature are used to derive estimates of the distance modulus of NGC 6822. A best value of 23.40 mag is adopted, based on an LMC distance modulus of 18.50 mag. The standard error of this quantity is ~0.05 mag. We show that to derive consistent moduli from Cepheid observations at different wavelengths, it is necessary that the fiducial LMC period-luminosity relations at these wavelengths should refer to the same subsample of stars. Such a set is provided. A distance modulus based on RR Lyrae variables agrees with the Cepheid result.
We derive a distance of $15.8pm0.4$ Mpc to the archetypical Seyfert 1 galaxy NGC 4151 based on the near-infrared Cepheid Period-Luminosity relation and new Hubble Space Telescope multiband imaging. This distance determination, based on measurements of 35 long-period ($P > 25$d) Cepheids, will support the absolute calibration of the supermassive black hole mass in this system, as well as studies of the dynamics of the feedback or feeding of its active galactic nucleus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا