No Arabic abstract
We analyze recent measurements [R. Blinc, V. V. Laguta, B. Zalar, M. Itoh and H. Krakauer, J. Phys. : Cond. Mat., v.20, 085204 (2008)] of the electric field gradient on the oxygen site in the perovskites SrTiO3 and BaTiO3, which revealed, in agreement with calculations, a large difference in the EFG for these two compounds. In order to analyze the origin of this difference, we have performed density functional electronic structure calculations within the local-orbital scheme FPLO. Our analysis yields the counter-intuitive behavior that the EFG increases upon lattice expansion. Applying the standard model for perovskites, the effective two-level p-d Hamiltonian, can not explain the observed behavior. In order to describe the EFG dependence correctly, a model beyond this usually sufficient p-d Hamiltonian is needed. We demonstrate that the counter-intuitive increase of the EFG upon lattice expansion can be explained by a s-p-d model, containing the contribution of the oxygen 2s states to the crystal field on the Ti site. The proposed model extension is of general relevance for all related transition metal oxides with similar crystal structure.
The deviation of the electron density around the nuclei from spherical symmetry determines the electric field gradient (EFG), which can be measured by various types of spectroscopy. Nuclear Quadrupole Resonance (NQR) is particularly sensitive to the EFG. The EFGs, and by implication NQR frequencies, vary dramatically across materials. Consequently, searching for NQR spectral lines in previously uninvestigated materials represents a major challenge. Calculated EFGs can significantly aid at the search inception. To facilitate this task, we have applied high-throughput density functional theory calculations to predict EFGs for 15187 materials in the JARVIS-DFT database. This database, which will include EFG as a standard entry, is continuously increasing. Given the large scope of the database, it is impractical to verify each calculation. However, we assess accuracy by singling out cases for which reliable experimental information is readily available and compare them to the calculations. We further present a statistical analysis of the results. The database and tools associated with our work are made publicly available by JARVIS-DFT ( https://www.ctcms.nist.gov/~knc6/JVASP.html ) and NIST-JARVIS API ( http://jarvis.nist.gov ).
Functional oxide perovskites are the pillar of cutting-edge technological applications. Density functional theory (DFT) simulations are the theoretical methods of choice to understand and design perovskite materials. However, tests on the reliability of DFT to describe fundamental properties of oxide perovskites are scarce and mostly ill-defined due to a lack of rigorous theoretical benchmarks for solids. Here, we present a quantum Monte Carlo benchmark study of DFT on the archetypal perovskite BaTiO$_{3}$ (BTO). It shows that no DFT approximation can simultaneously reproduce the energy, structure, and electronic density of BTO. Traditional protocols to select DFT approximations are empirical and fail to detect this shortcoming. An approach combining two different non-empirical DFT schemes, SCAN and HSE06, is able to holistically describe BTO with accuracy. Combined DFT approaches should thus be considered as a promising alternative to standard methods for simulating oxide perovskites.
We assess the validity of various exchange-correlation functionals for computing the structural, vibrational, dielectric, and thermodynamical properties of materials in the framework of density-functional perturbation theory (DFPT). We consider five generalized-gradient approximation (GGA) functionals (PBE, PBEsol, WC, AM05, and HTBS) as well as the local density approximation (LDA) functional. We investigate a wide variety of materials including a semiconductor (silicon), a metal (copper), and various insulators (SiO$_2$ $alpha$-quartz and stishovite, ZrSiO$_4$ zircon, and MgO periclase). For the structural properties, we find that PBEsol and WC are the closest to the experiments and AM05 performs only slightly worse. All three functionals actually improve over LDA and PBE in contrast with HTBS, which is shown to fail dramatically for $alpha$-quartz. For the vibrational and thermodynamical properties, LDA performs surprisingly very good. In the majority of the test cases, it outperforms PBE significantly and also the WC, PBEsol and AM05 functionals though by a smaller margin (and to the detriment of structural parameters). On the other hand, HTBS performs also poorly for vibrational quantities. For the dielectric properties, none of the functionals can be put forward. They all (i) fail to reproduce the electronic dielectric constant due to the well-known band gap problem and (ii) tend to overestimate the oscillator strengths (and hence the static dielectric constant).
A combined experimental and theoretical investigation of the electronic structure of the archetypal oxide heterointerface system LaAlO3 on SrTiO3 is presented. High-resolution, hard x-ray photoemission is used to uncover the occupation of Ti 3d states and the relative energetic alignment - and hence internal electric fields - within the LaAlO3 layer. Firstly, the Ti 2p core level spectra clearly show occupation of Ti 3d states already for two unit cells of LaAlO3. Secondly, the LaAlO3 core levels were seen to shift to lower binding energy as the LaAlO3 overlayer thickness, n, was increased - agreeing with the expectations from the canonical electron transfer model for the emergence of conductivity at the interface. However, not only is the energy offset of only 300meV between n=2 (insulating interface) and n=6 (metallic interface) an order of magnitude smaller than the simple expectation, but it is also clearly not the sum of a series of unit-cell by unit-cell shifts within the LaAlO3 block. Both of these facts argue against the simple charge-transfer picture involving a cumulative shift of the LaAlO3 valence bands above the SrTiO3 conduction bands, resulting in charge transfer only for n>3. Turning to the theoretical data, our density functional simulations show that the presence of oxygen vacancies at the LaAlO3 surface at the 25% level reverses the direction of the internal field in the LaAlO3. Therefore, taking the experimental and theoretical results together, a consistent picture emerges for real-life samples in which nature does not wait until n=4 and already for n=2, mechanisms other than internal-electric-field-driven electron transfer from idealized LaAlO3 to near-interfacial states in the SrTiO3 substrate are active in heading off the incipient polarization catastrophe that drives the physics in these systems.
The paper deals with the hyperfine interactions observed on the 57Fe nucleus in multiferroic BiFeO3 by means of the 14.41-keV resonant transition in 57Fe, and for transmission geometry applied to the random powder sample. Spectra were obtained at 80 K, 190 K and at room temperature. It was found that iron occurs in the high spin trivalent state. Hyperfine magnetic field follows distribution due to the elliptic-like distortion of the magnetic cycloid. The long axis of the ellipse is oriented along <111> direction of the rhombohedral unit cell. The hyperfine magnetic field in this direction is about 1.013 of the field in the perpendicular direction at room temperature. This ratio diminishes to 1.010 at 80 K. Axially symmetric electric field gradient (EFG) on the iron atoms has the principal axis oriented in the same direction and the main component of the EFG is positive. Our results are consistent with the finding that iron magnetic moments are confined to the [1-21] crystal plane.