No Arabic abstract
We investigate the symbiotic star BI Crucis through a comprehensive and self-consistent analysis of the spectra emitted in three different epochs: 60s, 70s, and late 80s. In particular, we would like to find out the physical conditions in the shocked nebula and in the dust shells, as well as their location within the symbiotic system, by exploiting both photometric and spectroscopic data from radio to UV. We suggest a model which, on the basis of optical imaging, emission line ratios and spectral energy distribution profile, is able to account for collision of the winds, formation of lobes and jets by accretion onto the WD, as well as for the interaction of the blast wave from a past, unrecorded outburst with the ISM. We have found that the spectra observed throughout the years show the marks of the different processes at work within BI Cru, perhaps signatures of a post-outburst evolution. We then call for new infrared and millimeter observations, potentially able to resolve the inner structure of the symbiotic nebula.
When galaxy clusters collide, they generate shock fronts in the hot intracluster medium. Observations of these shocks can provide valuable information on the merger dynamics and physical conditions in the cluster plasma, and even help constrain the nature of dark matter. To study shock fronts, one needs an X-ray telescope with high angular resolution (such as Chandra), and be lucky to see the merger from the right angle and at the right moment. As of this writing, only a handful of merger shock fronts have been discovered and confirmed using both X-ray imaging and gas temperature data -- those in 1E0657-56, A520, A754, and two fronts in A2146. A few more are probable shocks awaiting temperature profile confirmation -- those in A521, RXJ1314-25, A3667, A2744, and Coma. The highest Mach number is 3 in 1E0657-56, while the rest has M=1.6-2. Interestingly, all these relatively weak X-ray shocks coincide with sharp edges in their host clusters synchrotron radio halos (except in A3667, where it coincides with the distinct radio relic, and A2146, which does not have radio data yet). This is contrary to the common wisdom that weak shocks are inefficient particle accelerators, and may shed light on the mechanisms of relativistic electron production in astrophysical plasmas.
Any white dwarf or neutron star that accretes enough material from a red giant companion, such that this interaction can be detected at some wavelength, is currently termed Symbiotic Star (typical P(orb)=2-3 years). In the majority of ~400 known systems, the WD burns nuclearly at its surface the accreted material, and the resulting high temperature (T(eff)=10(^5)~K) and luminosity (L(hot)=10(^3)-10(^4) Lsun) allow ionization of a large fraction of the cool giants wind, making such symbiotic stars easily recognizable through the whole Galaxy and across the Local Group. X-ray observations are now revealing the existence of a parallel (and larger ?) population of optically-quiet, accreting-only symbiotic stars. Accretion flows and disks, ionization fronts and shock, complex 3D geometries and new evolution channels are gaining relevance and are reshaping our understanding of symbiotic stars. We review the different types of symbiotic stars currently in the family and their variegated outburst behaviors through an unified evolution scheme connecting them all.
On 2010 Mar 10, V407 Cyg was discovered in outburst, eventually reaching V< 8 and detected by Fermi. Using medium and high resolution ground-based optical spectra, visual and Swift UV photometry, and Swift X-ray spectrophotometry, we describe the behavior of the high-velocity profile evolution for this nova during its first three months. The peak of the X-ray emission occurred at about day 40 with a broad maximum and decline after day 50. The main changes in the optical spectrum began at around that time. The He II 4686A line first appeared between days 7 and 14 and initially displayed a broad, symmetric profile that is characteristic of all species before day 60. Low-excitation lines remained comparatively narrow, with v(rad,max) of order 200-400 km/s. They were systematically more symmetric than lines such as [Ca V], [Fe VII], [Fe X], and He II, all of which showed a sequence of profile changes going from symmetric to a blue wing similar to that of the low ionization species but with a red wing extended to as high as 600 km/s . The Na I D doublet developed a broad component with similar velocity width to the other low-ionization species. The O VI Raman features were not detected. We interpret these variations as aspherical expansion of the ejecta within the Mira wind. The blue side is from the shock penetrating into the wind while the red wing is from the low-density periphery. The maximum radial velocities obey power laws, v(rad,max) t^{-n} with n ~ 1/3 for red wing and ~0.8 for the blue. (truncated)
Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of nine white dwarf symbiotics that were not previously known to be X-ray sources and one that had previously been detected as a supersoft X-ray source. The nine new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. The Swift/XRT telescope detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component that we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component that probably originates in a region where low-velocity shocks produce X-ray emission, i.e., a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic star.............
Near-IR spectroscopy is presented for Nova Scorpii 2014. It is shown that the outburst occurred in a symbiotic binary system - an extremely rare configuration for a classical nova outburst to occur in but appropriate for the eruption of a recurrent nova of the T CrB class. We estimate the spectral class of secondary as M5III $pm$ (two sub-classes). The maximum magnitude versus rate of decline (MMRD) relations give an unacceptably large value of 37.5 kpc for the distance. The spectra are typical of the He/N class of novae with strong HeI and H lines. The profiles are broad and flat topped with full width at zero intensities (FWZIs) approaching 9000-10000 km s$^{-1}$ and also have a sharp narrow component superposed which is attributable to emission from the giants wind. Hot shocked gas, accompanied by X-rays and $gamma$ rays, is expected to form when the high velocity ejecta from the nova plows into the surrounding giant wind. Although X-ray emission was observed no $gamma$-ray emission was reported. It is also puzzling that no signature of a decelerating shock is seen in the near-infrared (NIR), seen in similar systems like RS Oph, V745 Sco and V407 Cyg, as rapid narrowing of the line profiles. The small outburst amplitude and the giant secondary strongly suggest that Nova Sco 2014 could be a recurrent nova.