Do you want to publish a course? Click here

A neutron scattering study of the interplay between structure and magnetism in Ba(Fe$_{1-x}$Co$_{x}$)$_2$As$_2$

153   0   0.0 ( 0 )
 Added by Stephen Hayden
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single crystal neutron diffraction is used to investigate the magnetic and structural phase diagram of the electron doped superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. Heat capacity and resistivity measurements have demonstrated that Co doping this system splits the combined antiferromagnetic and structural transition present in BaFe$_2$As$_2$ into two distinct transitions. For $x$=0.025, we find that the upper transition is between the high-temperature tetragonal and low-temperature orthorhombic structures with ($T_{mathrm{TO}}=99 pm 0.5$ K) and the antiferromagnetic transition occurs at $T_{mathrm{AF}}=93 pm 0.5$ K. We find that doping rapidly suppresses the antiferromagnetism, with antiferromagnetic order disappearing at $x approx 0.055$. However, there is a region of co-existence of antiferromagnetism and superconductivity. The effect of the antiferromagnetic transition can be seen in the temperature dependence of the structural Bragg peaks from both neutron scattering and x-ray diffraction. We infer from this that there is strong coupling between the antiferromagnetism and the crystal lattice.



rate research

Read More

Using electronic Raman spectroscopy, we report direct measurements of charge nematic fluctuations in the tetragonal phase of strain-free Ba(Fe$_{1-x}$Co$_{x})_{2}$As$_{2}$ single crystals. The strong enhancement of the Raman response at low temperatures unveils an underlying charge nematic state that extends to superconducting compositions and which has hitherto remained unnoticed. Comparison between the extracted charge nematic susceptibility and the elastic modulus allows us to disentangle the charge contribution to the nematic instability, and to show that charge nematic fluctuations are weakly coupled to the lattice.
We report Raman scattering measurements on iron-pnictide superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals with varying cobalt $x$ content. The electronic Raman continuum shows a strong spectral weight redistribution upon entering the magnetic phase induced by the opening of the Spin Density Wave (SDW) gap. It displays two spectral features that weaken with doping, which are assigned to two SDW induced electronic transitions. Raman symmetry arguments are discussed to identify the origin of these electronic transitions in terms of orbital ordering in the magnetic phase. Our data do not seem consistent with an orbital ordering scenario and advocate for a more conventional band-folding picture with two types of electronic transitions in the SDW state, a high energy transition between two anti-crossed SDW bands and a lower energy transition involving a folded band that do not anti-cross in the SDW state. The latter transition could be linked to the presence of Dirac cones in the electronic dispersion of the magnetic state. The spectra in the SDW state also show significant coupling between the arsenide optical phonon and the electronic continuum. The symmetry dependence of the arsenide phonon intensity indicates a strong in-plane anisotropy of the dielectric susceptibility in the magnetic state.
121 - S.-F. Wu , P. Richard , H. Ding 2016
Using polarization-resolved electronic Raman scattering we study under-doped, optimally-doped and over-doped Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ samples in the normal and superconducting states. We show that low-energy nematic fluctuations are universal for all studied doping range. In the superconducting state, we observe two distinct superconducting pair breaking peaks corresponding to one large and one small superconducting gaps. In addition, we detect a collective mode below the superconducting transition in the B$_{2g}$ channel and determine the evolution of its binding energy with doping. Possible scenarios are proposed to explain the origin of the in-gap collective mode. In the superconducting state of the under-doped regime, we detect a re-entrance transition below which the spectral background changes and the collective mode vanishes.
The precise momentum dependence of the superconducting gap in the iron-arsenide superconductor with Tc = 32K (BKFA) was determined from angle-resolved photoemission spectroscopy (ARPES) via fitting the distribution of the quasiparticle density to a model. The model incorporates finite lifetime and experimental resolution effects, as well as accounts for peculiarities of BKFA electronic structure. We have found that the value of the superconducting gap is practically the same for the inner Gamma-barrel, X-pocket, and blade-pocket, and equals 9 meV, while the gap on the outer Gamma-barrel is estimated to be less than 4 meV, resulting in 2Delta/kT_c=6.8 for the large gap, and 2Delta/kT_c<3 for the small gap. A large (77 pm 3%) non-superconducting component in the photoemission signal is observed below T_c. Details of gap extraction from ARPES data are discussed in Appendix.
Measurements of the current-voltage characteristics were performed on Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals with doping level $0.044 leq x leq 0.1$. An unconventional increase in the flux-flow resistivity $rho_{rm ff}$ with decreasing magnetic field was observed across this doping range. Such an abnormal field dependence of flux-flow resistivity is in contrast with the linear field dependence of $rho_{rm ff}$ in conventional type-II superconductors, but is similar to the behavior recently observed in the heavy-fermion superconductor CeCoIn$_5$. A significantly enhanced $rho_{rm ff}$ was found for the x=0.06 single crystals, implying a strong single-particle energy dissipation around the vortex cores. At different temperatures and fields and for a given doping concentration, the normalized $rho_{rm ff}$ scales with normalized field and temperature. The doping level dependence of these parameters strongly suggests that the abnormal upturn flux-flow resisitivity is likely related to the enhancement of spin fluctuations around the vortex cores of the optimally doped samples.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا