No Arabic abstract
We discuss synchronization in networks of neuronal oscillators which are interconnected via diffusive coupling, i.e. linearly coupled via gap junctions. In particular, we present sufficient conditions for synchronization in these networks using the theory of semi-passive and passive systems. We show that the conductance-based neuronal models of Hodgkin-Huxley, Morris-Lecar, and the popular reduced models of FitzHugh-Nagumo and Hindmarsh-Rose all satisfy a semi-passivity property, i.e. that is the state trajectories of such a model remain oscillatory but bounded provided that the supplied (electrical) energy is bounded. As a result, for a wide range of coupling configurations, networks of these oscillators are guaranteed to possess ultimately bounded solutions. Moreover, we demonstrate that when the coupling is strong enough the oscillators become synchronized. Our theoretical conclusions are confirmed by computer simulations with coupled HR and ML oscillators. Finally we discuss possible instabilities in networks of oscillators induced by the diffusive coupling.
Neurons are often connected, spatially and temporally, in phenomenal ways that promote wave propagation. Therefore, it is essential to analyze the emergent spatiotemporal patterns to understand the working mechanism of brain activity, especially in cortical areas. Here, we present an explicit mathematical analysis, corroborated by numerical results, to identify and investigate the spatiotemporal, non-uniform, patterns that emerge due to instability in an extended homogeneous 2D spatial domain, using the excitable Izhikevich neuron model. We examine diffusive instability and perform bifurcation and fixed-point analyses to characterize the patterns and their stability. Then, we derive analytically the amplitude equations that establish the activities of reaction-diffusion structures. We report on the emergence of diverse spatial structures including hexagonal and mixed-type patterns by providing a systematic mathematical approach, including variations in correlated oscillations, pattern variations and amplitude fluctuations. Our work shows that the emergence of spatiotemporal behavior, commonly found in excitable systems, has the potential to contribute significantly to the study of diffusively-coupled biophysical systems at large.
Networks of weakly nonlinear oscillators are considered with diffusive and time-delayed coupling. Averaging theory is used to determine parameter ranges for which the network experiences amplitude death, whereby oscillations are quenched and the equilibrium solution has a large domain of attraction. The amplitude death is shown to be a common phenomenon, which can be observed regardless of the precise nature of the nonlinearities and under very general coupling conditions. In addition, when the network consists of dissimilar oscillators, there exist parameter values for which only parts of the network are suppressed. Sufficient conditions are derived for total and partial amplitude death in arbitrary network topologies with general nonlinearities, coupling coefficients, and connection delays.
We show that subsets of interacting oscillators may synchronize in different ways within a single network. This diversity of synchronization patterns is promoted by increasing the heterogeneous distribution of coupling weights and/or asymmetries in small networks. We also analyze consistency, defined as the persistence of coexistent synchronization patterns regardless of the initial conditions. Our results show that complex weighted networks display richer consistency than regular networks, suggesting why certain functional network topologies are often constructed when experimental data are analyzed.
Periodically driven parametric oscillators offer a convenient way to simulate classical Ising spins. When many parametric oscillators are coupled dissipatively, they can be analogous to networks of Ising spins, forming an effective coherent Ising machine (CIM) that efficiently solves computationally hard optimization problems. In the companion paper, we studied experimentally the minimal realization of a CIM, i.e. two coupled parametric oscillators [L. Bello, M. Calvanese Strinati, E. G. Dalla Torre, and A. Peer, Phys. Rev. Lett. 123, 083901 (2019)]. We found that the presence of an energy-conserving coupling between the oscillators can dramatically change the dynamics, leading to everlasting beats, which transcend the Ising description. Here, we analyze this effect theoretically by solving numerically and, when possible, analytically the equations of motion of two parametric oscillators. Our main tools include: (i) a Floquet analysis of the linear equations, (ii) a multi-scale analysis based on a separation of time scales between the parametric oscillations and the beats, and (iii) the numerical identification of limit cycles and attractors. Using these tools, we fully determine the phase boundaries and critical exponents of the model, as a function of the intensity and the phase of the coupling and of the pump. Our study highlights the universal character of the phase diagram and its independence on the specific type of nonlinearity present in the system. Furthermore, we identify new phases of the model with more than two attractors, possibly describing a larger spin algebra.
We consider a model where a population of diffusively coupled limit-cycle oscillators, described by the complex Ginzburg-Landau equation, interacts nonlocally via an inertial field. For sufficiently high intensity of nonlocal inertial coupling, the system exhibits birhythmicity with two oscillation modes at largely different frequencies. Stability of uniform oscillations in the birhythmic region is analyzed by means of the phase dynamics approximation. Numerical simulations show that, depending on its parameters, the system has irregular intermittent regimes with local bursts of synchronization or desynchronization.