No Arabic abstract
Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over the next decade, as many of the most important questions in astrophysics are best tackled with massive surveys, often in synergy with each other and in tandem with the more traditional observatories. We argue that these surveys are most productive and have the greatest impact when the data from the surveys are made public in a timely manner. The rise of the survey astronomer is a substantial change in the demographics of our field; one of the most important challenges of the next decade is to find ways to recognize the intellectual contributions of those who work on the infrastructure of surveys (hardware, software, survey planning and operations, and databases/data distribution), and to make career paths to allow them to thrive.
We report the outcomes of a survey that explores the current practices, needs and expectations of the astrophysics community, concerning four research aspects: open science practices, data access and management, data visualization, and data analysis. The survey, involving 329 professionals from several research institutions, pinpoints significant gaps in matters such as results reproducibility, availability of visual analytics tools and adoption of Machine Learning techniques for data analysis. This research is conducted in the context of the H2020 NEANIAS project.
We present an optimized algorithm for assigning fibers to targets in next-generation fiber-fed multi-object spectrographs. The method, that we named draining algorithm, ensures that the maximum number of targets in a given target field is observed in the first few tiles. Using randomly distributed targets and mock galaxy catalogs we have estimated that the gain provided by the draining algorithm as compared to a random assignment can be as much as 2% for the first tiles. This would imply for a survey like BigBOSS saving for observation several hundred thousand objects or, alternatively, reducing the covered area in ~350 sq. deg. An important advantage of this method is that the fiber collision problem can be solved easily and in an optimal way. We also discuss additional optimizations of the fiber positioning process. In particular, we show that allowing for rotation of the focal plane can improve the efficiency of the process in ~3.5-4.5% even if only small adjustments are permitted (up to 2 deg). For instruments that allow large rotations of the focal plane the expected gain increases to ~5-6%. These results, therefore, strongly support focal plane rotation in future spectrographs, as far as the efficiency of the fiber positioning process is concerned. Finally, we discuss on the implications of our optimizations and provide some basic hints for an optimal survey strategy based on the number of targets per positioner.
(Abridged) The Truth and Reconciliation Commission of Canada published its calls to action in 2015 with 94 recommendations. Many of these 94 recommendations are directly related to education, language, and culture, some of which the Canadian Astronomy community can address and contribute to as part of reconciliation. The Canadian Astronomy community has an additional obligation since it benefits from facilities on Indigenous territories across Canada and the world. Furthermore, Indigenous people are still underrepresented at all levels in Canadian astronomy. The purpose of this Community Paper is to develop recommendations for the Canadian astronomy community to support Indigenous inclusion in the science community, support Indigenous learning by developing Indigenous-based learning materials and facilitate access to professionals and science activities, and to recognize and acknowledge the great contributions of Indigenous communities to our science activities. As part of this work we propose the ten following recommendations for CASCA as an organization and throughout this Community Paper we will include additional recommendations for individuals: astronomers, students and academics.
GravityCam is a new concept of ground-based imaging instrument capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. Advances in optical and near infrared imaging technologies allow images to be acquired at high speed without significant noise penalty. Aligning these images before they are combined can yield a 3-5 fold improvement in image resolution. By using arrays of such detectors, survey fields may be as wide as the telescope optics allows. We describe the instrument and detail its application to accelerate greatly the rate of detection of Earth size planets by gravitational microlensing. GravityCam will improve substantially the quality of weak shear studies of dark matter distribution in distant clusters of galaxies. An extensive microlensing survey will also provide a vast dataset for asteroseismology studies, and GravityCam promises to generate a unique data set on the population of the Kuiper belt and possibly the Oort cloud.
The American Astronomical Society (AAS) Journals are a vital asset of our professional society. With the push towards open access, page charges are a viable and sustainable option for continuing to effectively fund and publish the AAS Journals. However, the existing page charge model, which requires individual authors to pay page charges out of their grants or even out of pocket, is already challenging to some researchers and could be exacerbated in the Open Access (OA) era if charges increase. A discussion of alternative models for funding page charges and publishing costs should be part of the Astro2020 decadal survey if we wish to continue supporting the sustainable and accessible publication of US research in AAS journals in the rapidly-shifting publication landscape. The AAS Publications Committee recommends that the National Academy of Sciences form a task force to develop solutions and recommendations with respect to the urgent concerns and considerations highlighted in this White Paper.