Do you want to publish a course? Click here

The Star Formation Law at Low Surface Density

202   0   0.0 ( 0 )
 Added by Ted K. Wyder
 Publication date 2009
  fields Physics
and research's language is English
 Authors Ted K. Wyder




Ask ChatGPT about the research

We investigate the nature of the star formation law at low gas surface densities using a sample of 19 low surface brightness (LSB) galaxies with existing HI maps in the literature, UV imaging from the Galaxy Evolution Explorer satellite, and optical images from the Sloan Digital Sky Survey. All of the LSB galaxies have (NUV-r) colors similar to those for higher surface brightness star-forming galaxies of similar luminosity indicating that their average star formation histories are not very different. Based upon four LSB galaxies with both UV and FIR data, we find FIR/UV ratios significantly less than one, implying low amounts of internal UV extinction in LSB galaxies. We use the UV images and HI maps to measure the star formation rate and hydrogen gas surface densities within the same region for all of the galaxies. The LSB galaxy star formation rate surface densities lie below the extrapolation of the power law fit to the star formation rate surface density as a function of the total gas density for higher surface brightness galaxies. Although there is more scatter, the LSB galaxies also lie below a second version of the star formation law in which the star formation rate surface density is correlated with the gas density divided by the orbital time in the disk. The downturn seen in both star formation laws is consistent with theoretical models that predict lower star formation efficiencies in LSB galaxies due to the declining molecular fraction with decreasing density.



rate research

Read More

107 - David Thilker 2019
How do stars manage to form within low-density, HI-dominated gas? Such environments provide a laboratory for studying star formation with physical conditions distinct from starbursts and the metal-rich disks of spiral galaxies where most effort has been invested. Here we outline fundamental open questions about the nature of star formation at low-density. We describe the wide-field, high-resolution UV-optical-IR-radio observations of stars, star clusters and gas clouds in nearby galaxies needed in the 2020s to provide definitive answers, essential for development of a complete theory of star formation.
We analyze the relationship between maximum cluster mass, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H_2), neutral gas (Sigma_HI) and star formation rate (Sigma_SFR) in the grand design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. We find for clusters older than 25 Myr that M_3rd, the median of the 5 most massive clusters, is proportional to Sigma_HI^0.4. There is no correlation with Sigma_gas, Sigma_H2, or Sigma_SFR. For clusters younger than 10 Myr, M_3rd is proportional to Sigma_HI^0.6, M_3rd is proportional to Sigma_gas^0.5; there is no correlation with either Sigma_H_2 or Sigma_SFR. The results could hardly be more different than those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but M_3rd is proportional to Sigma_gas^3.8; M_3rd is proportional to Sigma_H_2^1.2; M_3rd proportional to Sigma_SFR^0.9. For the older sample in M51, the lack of tight correlations is probably due to the combination of the strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius, nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet traveled too far from their birthsites, the poor resolution of the radio data compared to the physical sizes of the clusters results in measured Sigmas that are likely quite diluted compared to the actual densities relevant for the formation of the clusters.
We study the star formation histories (SFH) and stellar populations of 213 red and 226 blue nearly face-on low surface brightness disk galaxies (LSBGs), which are selected from the main galaxy sample of Sloan Digital Sky Survey (SDSS) Data Release Seven (DR7). We also want to compare the stellar populations and SFH between the two groups. The sample of both red and blue LSBGs have sufficient signal-to-noise ratio in the spectral continua. We obtain their absorption-line indices (e.g. Mg_2, Hdelta_A), D_n(4000) and stellar masses from the MPA/JHU catalogs to study their stellar populations and SFH. Moreover we fit their optical spectra (stellar absorption lines and continua) by using the spectral synthesis code STARLIGHT on the basis of the templates of Simple Stellar Populations (SSPs). We find that red LSBGs tend to be relatively older, higher metallicity, more massive and have higher surface mass density than blue LSBGs. The D_n(4000)-Hdelta_A plane shows that perhaps red and blue LSBGs have different SFH: blue LSBGs are more likely to be experiencing a sporadic star formation events at the present day, whereas red LSBGs are more likely to form stars continuously over the past 1-2 Gyr. Moreover, the fraction of galaxies that experienced recent sporadic formation events decreases with increasing stellar mass. Furthermore, two sub-samples are defined for both red and blue LSBGs: the sub-sample within the same stellar mass range of 9.5 <= log(M_star/M_odot) <= 10.3, and the surface brightness limiting sub-sample with mu_0(R) <= 20.7 mag arcsec^{-2}. They show consistent results with the total sample in the corresponding relationships, which confirm that our results to compare the blue and red LSBGs are robust.
169 - J. Kauffmann 2011
We report the detection of a compact (of order 5 arcsec; about 1800 AU projected size) CO outflow from L1148-IRS. This confirms that this Spitzer source is physically associated with the nearby (about 325 pc) L1148 dense core. Radiative transfer modeling suggests an internal luminosity of 0.08 to 0.13 L_sun. This validates L1148-IRS as a Very Low Luminosity Object (VeLLO; L < 0.1 L_sun). The L1148 dense core has unusually low densities and column densities for a star-forming core. It is difficult to understand how L1148-IRS might have formed under these conditions. Independent of the exact final mass of this VeLLO (which is likely < 0.24 M_sun), L1148-IRS and similar VeLLOs might hold some clues about the isolated formation of brown dwarfs.
127 - Shannon G. Patel 2011
We study the star formation rates (SFRs) of galaxies as a function of local galaxy density at 0.6<z<0.9. We used a low-dispersion prism in IMACS on the 6.5-m Baade (Magellan I) telescope to obtain spectra and measured redshifts to a precision of sigma_z/(1+z)=1% for galaxies with z<23.3 AB mag. We utilized a stellar mass-limited sample of 977 galaxies above M>1.8x10^{10} Msun to conduct our main analysis. With three different SFR indicators, (1) Spitzer MIPS 24-micron imaging, (2) SED fitting, and (3) [OII]3727 emission, we find the median specific SFR (SSFR) and SFR to decline from the low-density field to the cores of groups and a rich cluster. For the SED and [OII] based SFRs, the decline in SSFR is roughly an order of magnitude while for the MIPS based SFRs, the decline is a factor of ~4. We find approximately the same magnitude of decline in SSFR even after removing the sample of galaxies near the cluster. Galaxies in groups and a cluster at these redshifts therefore have lower star formation (SF) activity than galaxies in the field, as is the case at z~0. We investigated whether the decline in SFR with increasing density is caused by a change in the proportion of quiescent and star forming galaxies (SFGs) or by a decline in the SFRs of SFGs. Using the rest-frame U-V and V-J colors to distinguish quiescent galaxies from SFGs we find the fraction of quiescent galaxies increases from ~32% to 79% from low to high density. In addition, we find the SSFRs of SFGs, selected based on U-V and V-J colors, to decline with increasing density by factors of ~5-6 for the SED and [OII] based SFRs. The MIPS based SSFRs for SFGs decline with a shallower slope. The order of magnitude decline in the SSFR-density relation at 0.6<z<0.9 is therefore driven by both a combination of declining SFRs of SFGs as well as a changing mix of SFGs and quiescent galaxies [ABRIDGED].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا