Do you want to publish a course? Click here

Application of the Kelly Criterion to Ornstein-Uhlenbeck Processes

171   0   0.0 ( 0 )
 Added by Bernhard Meister
 Publication date 2009
  fields Financial
and research's language is English




Ask ChatGPT about the research

In this paper, we study the Kelly criterion in the continuous time framework building on the work of E.O. Thorp and others. The existence of an optimal strategy is proven in a general setting and the corresponding optimal wealth process is found. A simple formula is provided for calculating the optimal portfolio for a set of price processes satisfying some simple conditions. Properties of the optimal investment strategy for assets governed by multiple Ornstein-Uhlenbeck processes are studied. The paper ends with a short discussion of the implications of these ideas for financial markets.



rate research

Read More

We develop a general framework for applying the Kelly criterion to stock markets. By supplying an arbitrary probability distribution modeling the future price movement of a set of stocks, the Kelly fraction for investing each stock can be calculated by inverting a matrix involving only first and second moments. The framework works for one or a portfolio of stocks and the Kelly fractions can be efficiently calculated. For a simple model of geometric Brownian motion of a single stock we show that our calculated Kelly fraction agrees with existing results. We demonstrate that the Kelly fractions can be calculated easily for other types of probabilities such as the Gaussian distribution and correlated multivariate assets.
103 - Bernhard K. Meister 2016
The influence of Commodity Trading Advisors (CTA) on the price process is explored with the help of a simple model. CTA managers are taken to be Kelly optimisers, which invest a fixed proportion of their assets in the risky asset and the remainder in a riskless asset. This requires regular adjustment of the portfolio weights as prices evolve. The CTA trading activity impacts the price change in the form of a power law. These two rules governing investment ratios and price impact are combined and lead through updating at fixed time intervals to a deterministic price dynamic. For different choices of the model parameters one gets qualitatively different dynamics. The result can be expressed as a phase diagram. Meta-CTA strategies can be devised to exploit the predictability inherent in the model dynamics by avoiding critical areas of the phase diagram or by taking a contrarian position at an opportune time.
The Ornstein-Uhlenbeck process can be seen as a paradigm of a finite-variance and statistically stationary rough random walk. Furthermore, it is defined as the unique solution of a Markovian stochastic dynamics and shares the same local regularity as the one of the Brownian motion. Based on previous works, we propose to include in the framework of one of its generalization, the so-called fractional Ornstein-Uhlenbeck process, some Multifractal corrections, using a Gaussian Multiplicative Chaos. The aforementioned process, called a Multifractal fractional Ornstein-Uhlenbeck process, is a statistically stationary finite-variance process. Its underlying dynamics is non-Markovian, although non-anticipating and causal. The numerical scheme and theoretical approach are based on a regularization procedure, that gives a meaning to this dynamical evolution, which unique solution converges towards a well-behaved stochastic process.
110 - Paolo Barucca 2014
We define a random-matrix ensemble given by the infinite-time covariance matrices of Ornstein-Uhlenbeck processes at different temperatures coupled by a Gaussian symmetric matrix. The spectral properties of this ensemble are shown to be in qualitative agreement with some stylized facts of financial markets. Through the presented model formulas are given for the analysis of heterogeneous time-series. Furthermore evidence for a localization transition in eigenvectors related to small and large eigenvalues in cross-correlations analysis of this model is found and a simple explanation of localization phenomena in financial time-series is provided. Finally we identify both in our model and in real financial data an inverted-bell effect in correlation between localized components and their local temperature: high and low temperature/volatility components are the most localized ones.
The paper is concerned with the properties of solutions to linear evolution equation perturbed by cylindrical Levy processes. It turns out that solutions, under rather weak requirements, do not have c`adl`ag modification. Some natural open questions are also stated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا