Do you want to publish a course? Click here

Excited-State Effective Masses in Lattice QCD

175   0   0.0 ( 0 )
 Added by George T. Fleming
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.



rate research

Read More

Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Large sets of spatially-extended hadron operators are used. The need for multi-hadron operators in addition to single-hadron operators is emphasized, necessitating the use of a new stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing. A new glueball operator is tested, and computing the mixing of this glueball operator with a quark-antiquark operator and multiple two-pion operators is shown to be feasible.
Our progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Sets of spatially-extended hadron operators with a variety of different momenta are used. A new method of stochastically estimating the low-lying effects of quark propagation is utilized which allows reliable determinations of temporal correlations of both single-hadron and multi-hadron operators. The method is tested on the isoscalar mesons in the scalar, pseudoscalar, and vector channels, and on the two-pion system of total isospin I=0,1,2.
Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.
72 - Bernhard U. Musch 2006
This work discusses reliability, possible obstacles and the future perspective of chiral extrapolation of lattice results. In the first part, chiral perturbation theory fits to lattice calculations of the nucleon mass are thoroughly explored in terms of statistical uncertainty and convergence. Lattice volume dependence is exploited as a source of additional fit constraints. In discussing consistency with pion-nucleon scattering, the role of the Delta(1232) excitation is clarified. In the second part of the work, pion and kaon mass lattice data are analyzed using three-flavor chiral perturbation theory. SU(3)-SU(2) matching conditions permit to examine deviations from the Gell-Mann, Oakes, Renner relation. Introductory chapters provide a quick start guide to manifestly covariant baryon chiral perturbation theory, basic understanding of lattice QCD and a self-contained explanation of the relevant statistical methods.
Excited state contamination remains one of the most challenging sources of systematic uncertainty to control in lattice QCD calculations of nucleon matrix elements and form factors. Most lattice QCD collaborations advocate for the use of high-statistics calculations at large time separations ($t_{rm sep}gtrsim1$ fm) to combat the signal-to-noise degradation. In this work we demonstrate that, for the nucleon axial charge, $g_A$, the alternative strategy of utilizing a large number of relatively low-statistics calculations at short to medium time separations ($0.2lesssim t_{rm sep}lesssim1$ fm), combined with a multi-state analysis, provides a more robust and economical method of quantifying and controlling the excited state systematic uncertainty, including correlated late-time fluctuations that may bias the ground state. We show that two classes of excited states largely cancel in the ratio of the three-point to two-point functions, leaving the third class, the transition matrix elements, as the dominant source of contamination. On an $m_piapprox310$ MeV ensemble, we observe the expected exponential suppression of excited state contamination in the Feynman-Hellmann correlation function relative to the standard three-point function; the excited states of the regular three-point function reduce to the 1% level for $t_{rm sep} >2$ fm while, for the Feynman-Hellmann correlation function, they are suppressed to 1% at $t_{rm sep}approx1$ fm. Independent analyses of the three-point and Feynman-Hellmann correlators yield consistent results for the ground state. However, a combined analysis allows for a more detailed and robust understanding of the excited state contamination, improving the demonstration that the ground state parameters are stable against variations in the excited state model, the number of excited states, and the truncation of early-time or late-time numerical data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا