Do you want to publish a course? Click here

Nonadditivity in the effective interactions of binary charged colloidal suspensions

153   0   0.0 ( 0 )
 Added by Allahyaroff
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on primitive model computer simulations with explicit microions, we calculate the effective interactions in a binary mixture of charged colloids with species $A$ and $B$ for different size and charge ratios. An optimal pairwise interaction is obtained by fitting the many-body effective forces. This interaction is close to a Yukawa (or Derjaguin-Landau-Verwey-Overbeek(DLVO)) pair potential but the $AB$ cross-interaction is different from the geometric mean of the two direct $AA$ and $BB$ interactions. As a function of charge asymmetry, the corresponding nonadditivity parameter is first positive, then getting significantly negative and is getting then positive again. We finally show that an inclusion of nonadditivity within an optimal effective Yukawa model gives better predictions for the fluid pair structure than DLVO-theory.



rate research

Read More

197 - E. Allahyarov , H. Loewen 2000
We study the effect of solvent granularity on the effective force between two charged colloidal particles by computer simulations of the primitive model of strongly asymmetric electrolytes with an explicitly added hard sphere solvent. Apart from molecular oscillating forces for nearly touching colloids which arise from solvent and counterion layering, the counterions are attracted towards the colloidal surfaces by solvent depletion providing a simple statistical description of hydration. This, in turn, has an important influence on the effective forces for larger distances which are considerably reduced as compared to the prediction based on the primitive model. When these forces are repulsive, the long-distance behaviour can be described by an effective Yukawa pair potential with a solvent-renormalized charge. As a function of colloidal volume fraction and added salt concentration, this solvent-renormalized charge behaves qualitatively similar to that obtained via the Poisson-Boltzmann cell model but there are quantitative differences. For divalent counterions and nano-sized colloids, on the other hand, the hydration may lead to overscreened colloids with mutual attraction while the primitive model yields repulsive forces. All these new effects can be accounted for through a solvent-averaged primitive model (SPM) which is obtained from the full model by integrating out the solvent degrees of freedom. The SPM was used to access larger colloidal particles without simulating the solvent explicitly.
We discuss the peculiarities of the Seebeck effect in stabilized electrolytes containing the colloidal particles. Its unusual feature is the two-stage character, with the linear increase of differential thermopower as the function of colloidal particles concentration $n_{odot}$ during the first stage and dramatic drop of it at small $n_{odot}$ during the second one (steady state). We show that the properties of the initial state are governed by the thermo-diffusion flows of the mobile ions of the stabilizing electrolyte medium itself and how the colloidal particles participate in formation of the electric field in the bulk of suspension. In its turn the specifics of the steady state in thermoelectric effect we attribute to considerable displacements of the massive colloidal particles in process of their slow thermal diffusion and break down of their electroneutrality in the vicinity of electrodes
Aqueous suspensions of highly charged polystyrene particles with different volume fractions have been investigated for structural ordering and phase behavior using static light scattering (SLS) and confocal laser scanning microscope (CLSM). Under deionized conditions, suspensions of high charge density colloidal particles remained disordered whereas suspensions of relatively low charge density showed crystallization by exhibiting iridescence for the visible light. Though for unaided eye crystallized suspensions appeared homogeneous, static light scattering measurements and CLSM observations have revealed their inhomogeneous nature in the form of coexistence of voids with dense ordered regions. CLSM investigations on disordered suspensions showed their inhomogeneous nature in the form coexistence of voids with dense disordered (amorphous) regions. Our studies on highly charged colloids confirm the occurrence of gas-solid transition and are in accordance with predictions of Monte Carlo simulations using a pair-potential having a long-range attractive term [Mohanty and Tata, Journal of Colloid and Interface Science 2003, 264, 101]. Based on our experimental and simulation results we argue that the reported reentrant disordered state [Yamanaka et al Phys. Rev. Lett. 1998, 80, 5806 and Toyotama et al Langmuir, 2003, 19, 3236] in charged colloids observed at high charge densities is a gas-solid coexistence state.
We study the fluctuation-induced Casimir interactions in colloidal suspensions, especially between colloids immersed in a binary liquid close to its critical demixing point. To simulate these systems, we present a highly efficient cluster Monte Carlo algorithm based on geometric symmetries of the Hamiltonian. Utilizing the principle of universality, the medium is represented by an Ising system while the colloids are areas of spins with fixed orientation. Our results for the Casimir interaction potential between two particles at the critical point in two dimensions perfectly agree with the exact predictions. However, we find that in finite systems the behavior strongly depends on whether the $Z_{2}$ symmetry of the system is broken by the particles. Eventually we present Monte Carlo results for the three-body Casimir interaction potential and take a close look onto the case of one particle in the vicinity of two adjacent particles, which can be calculated from the two-particle interaction by a conformal mapping. These results emphasize the failure of the common decomposition approach for many-particle critical Casimir interactions.
An ultra-fast quench is applied to binary mixtures of superparamagnetic colloidal particles confined at a two-dimensional water-air interface by a sudden increase of an external magnetic field. This quench realizes a virtually instantaneous cooling which is impossible in molecular systems. Using real-space experiments, the relaxation behavior after the quench is explored. Local crystallites with triangular and square symmetry are formed on different time scales and the correlation peak amplitude of the small particles evolves nonmonotonically in time in agreement with Brownian dynamics computer simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا