Do you want to publish a course? Click here

The stellar content of low redshift radio galaxies from near-infrared spectroscopy

165   0   0.0 ( 0 )
 Added by Tomi Hyvonen
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present medium spectral resolution near-infrared (NIR) HK-band spectra for 8 low redshift (z<0.06) radio galaxies to study the NIR stellar properties of their host galaxies. As a homogeneous comparison sample, we used 9 inactive elliptical galaxies that were observed with similar resolution and wavelength range. The aim of the study is to compare the NIR spectral properties of radio galaxies to those of inactive early-type galaxies and, furthermore, produce the first NIR HK-band spectra for low redshift radio galaxies. For both samples spectral indices of several diagnostic absorption features, SiI(1.589microns), CO(1.619microns), NaI(2.207microns), CaI(2.263microns), CO(>2.29microns), were measured. To characterize the age of the populations, the measured EWs of the absorption features were fitted with the corresponding theoretical evolutionary curves of the EWs calculated by the stellar synthesis model. On average, EW(CO 2.29) of radio galaxies is somewhat greater than that of inactive ellipticals. Most likely, EW(CO 2.29) is not significantly affected by dilution, and thus indicating that elliptical galaxies containing AGN are in a different stage in their evolution than inactive ellipticals. This is also supported by comparing other NIR features, such as CaI and NaI, with each other. Absorption features are consistent with the intermediate age stellar population, suggesting that host galaxies contain both an old and intermediate age components. It is consistent with previous optical spectroscopy studies which have shown evidence on the intermediate age (~2 Gyr) stellar population of radio galaxies, and also in some of the early-type galaxies. The existence of intermediate age population is a link between the star formation episode, possibly induced by interaction or merging event, and the triggering of the nuclear activity.



rate research

Read More

We present high spatial resolution, medium spectral resolution near-infrared (NIR) H- and K-band long-slit spectroscopy for a sample of 29 nearby (z < 0.01) inactive spiral galaxies, to study the composition of their NIR stellar populations. These spectra contain a wealth of diagnostic stellar absorption lines, e.g. MgI 1.575 micron, SiI 1.588 micron, CO (6-3) 1.619 micron, MgI 1.711 micron, NaI 2.207 micron, CaI 2.263 micron and the 12CO and 13CO bandheads longward of 2.29 micron. We use NIR absorption features to study the stellar population and star formation properties of the spiral galaxies along the Hubble sequence, and we produce the first high spatial resolution NIR HK-band template spectra for low redshift spiral galaxies along the Hubble sequence. These templates will find applications in a variety of galaxy studies. The strength of the absorption lines depends on the luminosity and/or temperature of stars and, therefore, spectral indices can be used to trace the stellar population of galaxies. The entire sample testifies that the evolved red stars completely dominate the NIR spectra, and that the hot young star contribution is virtually nonexistent.
To investigate the ingredients, which allow star-forming galaxies to present Lyalpha line in emission, we studied the kinematics and gas phase metallicity (Z) of the interstellar medium. We used multi-object NIR spectroscopy with Magellan/MMIRS to study nebular emission from z=2-3 star-forming galaxies discovered in 3 MUSYC fields. We detected emission lines from four active galactic nuclei and 13 high-z star-forming galaxies, including Halpha lines down to a flux of 4.E-17 erg/sec/cm^2. This yielded 7 new redshifts. The most common emission line detected is [OIII]5007, which is sensitive to Z. We were able to measure Z for 2 galaxies and to set upper(lower) limits for another 2(2). The Z values are consistent with 0.3<Z/Zsun<1.2. Comparing the Lyalpha central wavelength with the systemic redshift, we find Delta_v(Lyalpha-[OIII])=70-270 km/sec. High-redshift star-forming galaxies, Lyalpha emitting (LAE) galaxies, and Halpha emitters appear to be located in the low mass, high star-formation rate (SFR) region of the SFR versus stellar mass diagram, confirming that they are experiencing burst episodes of star formation, which are building up their stellar mass. Their Zs are consistent with the relation found for z<2.2 galaxies in the Z versus stellar mass plane. The measured Delta_v(Lyalpha-[OIII]) values imply that outflows of material, driven by star formation, could be present in the z=2-3 LAEs of our sample. Comparing with the literature, we note that galaxies with lower Z than ours are also characterized by similar Delta_v(Lyalpha-[OIII]) velocity offsets. Strong [OIII] is detected in many Lyalpha emitters. Therefore, we propose the Lyalpha/[OIII] flux ratio as a tool for the study of high-z galaxies; while influenced by Z, ionization, and Lyalpha radiative transfer in the ISM, it may be possible to calibrate this ratio to primarily trace one of these effects.
We present B-band imaging of 18 low redshift (z<0.3) BL Lac objects for which their host galaxies were previously resolved in the R-band and the near-infrared H-band. For a subset of the objects, also U- and V-band imaging is presented. These data are used to investigate the blue-red-near-infrared colours and the colour gradients of the host galaxies of BL Lacs in comparison with other elliptical galaxies with and without nuclear activity. In all cases galaxies are well represented by an elliptical model, with average absolute magnitude M_B=-21.6+-0.7 and average scale length R_e=7.6+-3.2 kpc. The best-fit B-band Kormendy relation is in reasonable agreement with that obtained for normal ellipticals and radio galaxies. This structural and dynamical similarity indicates that all massive elliptical galaxies can experience nuclear activity without significant perturbation of their global structure. The distributions of the integrated blue/near-infrared colour (with average B-H=3.5+-0.5) and colour gradient (with average Delta(B-R)/Delta(log r)=-0.14+-0.75) of the BL Lac hosts are much wider than those for normal ellipticals, and most BL Lac objects have bluer hosts and/or steeper colour gradients than those in normal ellipticals. The blue colours are likely caused by a young stellar population component, and indicates a link between star formation caused by an interaction/merging event and the onset of the nuclear activity. This result is corroborated by stellar population modelling, indicating a presence of young/intermediate age populations in the majority of the sample, in agreement with low redshift quasar hosts. The lack of strong signs of interaction may require a significant time delay between the event with associated star formation episodes and the start of the nuclear activity.
137 - A.G. Bedregal 2013
We combine Hubble Space Telescope (HST) G102 & G141 NIR grism spectroscopy with HST/WFC3-UVIS, HST/WFC3-IR and Spitzer/IRAC[3.6mu m] photometry to assemble a sample of massive (log(M_star/M_sun) ~ 11) and quenched galaxies at z~1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local Universe, z~1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find their SEDs are well fitted with exponentially decreasing SFHs, and short star-formation time-scales (tau<100Myr). Quenched galaxies also show a wide distribution in ages, between 1-4Gyr. In the (u-r)_0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the z~1.5 red-sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies ON the RS have older median ages (3.1Gyr) than the quenched galaxies OFF the RS (1.5Gyr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies OFF the RS. We derive the upper limit on the fraction of massive galaxies ON the RS at z~1.5 to be <43%. We speculate that the young quenched galaxies OFF the RS are in a transition phase between vigorous star formation at z>2 and the z~1.5 RS. According to their estimated ages, the time required for quenched galaxies OFF the RS to join their counterparts ON the z~1.5 RS is of the order of ~1Gyr.
We present near-infrared (0.8-1.8 $mu$m) spectra of 105 bright (${m_{J}}$ $<$ 10) stars observed with the low resolution spectrometer on the rocket-borne Cosmic Infrared Background Experiment (CIBER). As our observations are performed above the earths atmosphere, our spectra are free from telluric contamination, which makes them a unique resource for near-infrared spectral calibration. Two-Micron All Sky Survey (2MASS) photometry information is used to identify cross-matched stars after reduction and extraction of the spectra. We identify the spectral types of the observed stars by comparing them with spectral templates from the Infrared Telescope Facility (IRTF) library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا