Do you want to publish a course? Click here

Voltage-driven quantum oscillations of conductance in graphene

271   0   0.0 ( 0 )
 Added by Yampol'skii
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Locally-gated single-layer graphene sheets have unusual discrete energy states inside the potential barrier induced by a finite-width gate. These states are localized outside the Dirac cone of continuum states and are responsible for novel quantum transport phenomena. Specifically, the longitudinal (along the barrier) conductance exhibits oscillations as a function of barrier height and/or width, which are both controlled by a nearby gate. The origin of these oscillations can be traced back to singularities in the density of localized states. These graphene conductance-oscillations resemble the Shubnikov-de-Haas (SdH) magneto-oscillations; however, here these are driven by an electric field instead of a magnetic field.



rate research

Read More

147 - T. Shen , Y.Q. Wu , M.A. Capano 2008
Epitaxial graphene films have been formed on the C-face of semi-insulating 4H-SiC substrates by a high temperature sublimation process. Nano-scale square antidot arrays have been fabricated on these graphene films. At low temperatures, magneto-conductance in these films exhibits pronounced Aharonov-Bohm oscillations with the period corresponding to magnetic flux quanta added to the area of a single antidot. At low fields, weak localization is observed and its visibility is enhanced by intravalley scattering on antidot edges. At high fields, we observe two distinctive minima in magnetoconductance which can be attributed to commensurability oscillations between classical cyclotron orbits and antidot array. All mesoscopic features, surviving up to 70 K, reveal the unique electronic properties of graphene.
156 - E. Pyurbeeva , J.L. Swett , Q. Ye 2021
Feedback-controlled electric breakdown of graphene in air or vacuum is a well-established way of fabricating tunnel junctions, nanogaps, and quantum dots. We show that the method is equally applicable to encapsulated graphene constrictions fabricated using hydrogen silsesquioxane. The silica-like layer left by hydrogen silsesquioxane resist after electron-beam exposure remains intact after electric breakdown of the graphene. We explore the conductance switching behavior that is common in graphene nanostructures fabricated via feedback-controlled breakdown, and show that it can be attributed to atomic-scale fluctuations of graphene below the encapsulating layer. Our findings open up new ways of fabricating encapsulated room-temperature single-electron nanodevices and shed light on the underlying physical mechanism of conductance switching in these graphene nanodevices.
We study quantum point contacts in two-dimensional topological insulators by means of quantum transport simulations for InAs/GaSb heterostructures and HgTe/(Hg,Cd)Te quantum wells. In InAs/GaSb, the density of edge states shows an oscillatory decay as a function of the distance to the edge. This is in contrast to the behavior of the edge states in HgTe quantum wells, which decay into the bulk in a simple exponential manner. The difference between the two materials is brought about by spatial separation of electrons and holes in InAs/GaSb, which affects the magnitudes of the parameters describing the particle-hole asymmetry and the strength of intersubband coupling within the Bernevig-Hughes-Zhang model. We show that the character of the wave function decay impacts directly the dependence of the point contact conductance on the constriction width and the Fermi energy, which can be verified experimentally and serve to determine accurately the values of relevant parameters. In the case of InAs/GaSb heterostructures the conductance magnitude oscillates as a function of the constriction width following the oscillations of the edge state penetration, whereas in HgTe/(Hg,Cd)Te quantum wells a single switching from transmitting to reflecting contact is predicted.
Measurement and theory of the two-terminal conductance of monolayer and bilayer graphene in the quantum Hall regime are compared. We examine features of conductance as a function of gate voltage that allow monolayer, bilayer, and gapped samples to be distinguished, including N-shaped distortions of quantum Hall plateaus and conductance peaks and dips at the charge neutrality point. Generally good agreement is found between measurement and theory. Possible origins of discrepancies are discussed.
519 - Haidong Li , Yisong Zheng 2008
The contact conductance between graphene and two quantum wires which serve as the leads to connect graphene and electron reservoirs is theoretically studied. Our investigation indicates that the contact conductance depends sensitively on the graphene-lead coupling configuration. When each quantum wire couples solely to one carbon atom, the contact conductance vanishes at the Dirac point if the two carbon atoms coupling to the two leads belong to the same sublattice of graphene. We find that such a feature arises from the chirality of the Dirac electron in graphene. Such a chirality associated with conductance zero disappears when a quantum wire couples to multiple carbon atoms. The general result irrelevant to the coupling configuration is that the contact conductance decays rapidly with the increase of the distance between the two leads. In addition, in the weak graphene-lead coupling limit, when the distance between the two leads is much larger than the size of the graphene-lead contact areas and the incident electron energy is close to the Dirac point, the contact conductance is proportional to the square of the product of the two graphene-lead contact areas, and inversely proportional to the square of the distance between the two leads.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا