The space-time correlations of streams of photons can provide fundamentally new channels of information about the Universe. Todays astronomical observations essentially measure certain amplitude coherence functions produced by a source. The spatial correlations of wave fields has traditionally been exploited in Michelson-style amplitude interferometry. However the technology of the past was largely incapable of fine timing resolution and recording multiple beams. When time and space correlations are combined it is possible to achieve spectacular measurements that are impossible by any other means. Stellar intensity interferometry is ripe for development and is one of the few unexploited mechanisms to obtain potentially revolutionary new information in astronomy. As we discuss below, the modern use of stellar intensity interferometry can yield unprecedented measures of stellar diameters, binary stars, distance measures including Cepheids, rapidly rotating stars, pulsating stars, and short-time scale fluctuations that have never been measured before.