No Arabic abstract
We build a spherical halo model for galaxies using a general scalar-tensor theory of gravity in its Newtonian limit. The scalar field is described by a time-independent Klein-Gordon equation with a source that is coupled to the standard Poisson equation of Newtonian gravity. Our model, by construction, fits both the observed rotation velocities of stars in spirals and a typical luminosity profile. As a result, the form of the new Newtonian potential, the scalar field, and dark matter distribution in a galaxy are determined. Taking into account the constraints for the fundamental parameters of the theory (lambda,alpha), we analyze the influence of the scalar field in the dark matter distribution, resulting in shallow density profiles in galactic centers.
Scalar-tensor theories are frequently only consistent with fifth force constraints in the presence of a screening mechanism, namely in order to suppress an otherwise unacceptably large coupling between the scalar and ordinary matter. Here we investigate precisely which subsets of Horndeski theories do not give rise to and/or require such a screening mechanism. We investigate these subsets in detail, deriving their form and discussing how they are restricted upon imposing additional bounds from the speed of gravitational waves, solar system tests and cosmological observables. Finally, we also identify what subsets of scalar-tensor theories precisely recover the predictions of standard (linearised) $Lambdatext{CDM}$ cosmologies in the quasi-static limit.
In a recent work, we had constructed a model consisting of two fields---a canonical scalar field and a non-canonical ghost field---that had sourced a symmetric matter bounce scenario. The model had involved only one parameter, viz. the scale associated with the bounce. For a suitable value of the parameter, the model had led to strictly scale invariant power spectra with a COBE normalized scalar amplitude and a rather small tensor-to-scalar ratio. In this work, we extend the model to achieve near-matter bounces, which contain a second parameter apart from the bounce scale. As the new model does not seem to permit analytical evaluation of the scalar modes near the bounce, with the aid of techniques which we had used in our earlier work, we compute the scalar and the tensor power spectra numerically. For appropriate values of the additional parameter, we find that the model produces red spectra with a scalar spectral tilt and a small tensor-to-scalar ratio which are consistent with the recent observations of the anisotropies in the cosmic microwave background by Planck.
We reconsider the issue of whether scalar-tensor theories can admit stable wormhole configurations supported by a non-trivial radial profile for the scalar field. Using a recently proposed effective theory for perturbations around static, spherically symmetric backgrounds, we show that scalar-tensor theories of beyond Horndeski type can have wormhole solutions that are free of ghost and gradient instabilities. Such solutions are instead forbidden within the more restrictive Horndeski class of theories.
We present measurements of the spatial clustering statistics in redshift space of various scalar field modified gravity simulations. We utilise the two-point and the three-point correlation functions to quantify the spatial distribution of dark matter halos within these simulations and thus discern between the models. We compare $Lambda$CDM simulations to various modified gravity scenarios and find consistency with previous work in terms of 2-point statistics in real and redshift-space. However using higher order statistics such as the three-point correlation function in redshift space we find significant deviations from $Lambda$CDM hinting that higher order statistics may prove to be a useful tool in the hunt for deviations from General Relativity.
Attempts at constraining theories of late time accelerated expansion often assume broad priors for the parameters in their phenomenological description. Focusing on shift-symmetric scalar-tensor theories with standard gravitational wave speed, we show how a more careful analysis of their dynamical evolution leads to much narrower priors. In doing so, we propose a simple and accurate parametrisation of these theories, capturing the redshift dependence of the equation of state, $w(z)$, and the kinetic braiding parameter, $alpha_{rm B}(z)$, with only two parameters each, and derive their statistical distribution (a.k.a. theoretical priors) that fit the cosmology of the underlying model. We have considered t