No Arabic abstract
We report on the first axion search results from the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. An energy threshold of 2 keV for electron-recoil events allows a search for possible solar axion conversion into photons or local Galactic axion conversion into electrons in the germanium crystal detectors. The solar axion search sets an upper limit on the Primakov coupling $g_{agammagamma}$ of 2.4$ times 10^{-9}$ GeV$^{-1}$ at the 95% confidence level for an axion mass less than 0.1 keV/c$^2$. This limit benefits from the first precise measurement of the absolute crystal plane orientations in this type of experiment. The Galactic axion search analysis sets a world-leading experimental upper limit on the axio-electric coupling $g_{abar{e}e}$ of 1.4$ times 10^{-12}$ at the 90 % confidence level for an axion mass of 2.5 keV/c$^2$. This analysis excludes an interpretation of the DAMA annual modulation result in terms of Galactic axion interactions for axion masses above 1.4 keV/c$^2$.
Results are presented from a reanalysis of the entire five-tower data set acquired with the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory, with an exposure of 969 kg-days. The analysis window was extended to a recoil energy of 150 keV, and an improved surface-event background-rejection cut was defined to increase the sensitivity of the experiment to the inelastic dark matter (iDM) model. Three dark matter candidates were found between 25 keV and 150 keV. The probability to observe three or more background events in this energy range is 11%. Because of the occurrence of these events the constraints on the iDM parameter space are slightly less stringent than those from our previous analysis, which used an energy window of 10-100 keV.
We have started the development of a detector system, sensitive to single photons in the eV energy range, to be suitably coupled to one of the CAST magnet ports. This system should open to CAST a window on possible detection of low energy Axion Like Particles emitted by the sun. Preliminary tests have involved a cooled photomultiplier tube coupled to the CAST magnet via a Galileian telescope and a switched 40 m long optical fiber. This system has reached the limit background level of the detector alone in ideal conditions, and two solar tracking runs have been performed with it at CAST. Such a measurement has never been done before with an axion helioscope. We will present results from these runs and briefly discuss future detector developments.
The results of a search for solar axions from the Korea Invisible Mass Search (KIMS) experiment at the Yangyang Underground Laboratory are presented. Low-energy electron-recoil events would be produced by conversion of solar axions into electrons via the axio-electric effect in CsI(Tl) crystals. Using data from an exposure of 34,596 $rm kg cdot days$, we set a 90 % confidence level upper limit on the axion-electron coupling, $g_{ae}$, of $1.39 times 10^{-11}$ for an axion mass less than 1 keV/$rm c^2$. This limit is lower than the indirect solar neutrino bound, and fully excludes QCD axions heavier than 0.48 eV/$rm c^2$ and 140.9 eV/$rm c^2$ for the DFSZ and KSVZ models respectively.
CDMS II data from the 5-tower runs at the Soudan Underground Laboratory were reprocessed with an improved charge-pulse fitting algorithm. Two new analysis techniques to reject surface-event backgrounds were applied to the 612 kg days germanium-detector WIMP-search exposure. An extended analysis was also completed by decreasing the 10 keV analysis threshold to $sim$5 keV, to increase sensitivity near a WIMP mass of 8 GeV/$c^2$. After unblinding, there were zero candidate events above a deposited energy of 10 keV and 6 events in the lower-threshold analysis. This yielded minimum WIMP-nucleon spin-independent scattering cross-section limits of $1.8 times 10^{-44}$ and $1.18 times 10 ^{-41}$ cm$^2$ at 90% confidence for 60 and 8.6 GeV/$c^2$ WIMPs, respectively. This improves the previous CDMS II result by a factor of 2.4 (2.7) for 60 (8.6) GeV/$c^2$ WIMPs.
The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using 3He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with 4He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV < m_a < 0.64 eV. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 2.3 x 10^{-10} GeV^{-1} at 95% CL, the exact value depending on the pressure setting. KSVZ axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In future we will extend our search to m_a < 1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.