Do you want to publish a course? Click here

Radio Supernovae: Circum-Stellar Investigation (C.S.I.) of Supernova Progenitor Stars

185   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Prior to explosion, a supernova progenitor slowly loses significant amounts of its hydrogen envelope in a stellar wind. After the explosion, the blastwave interacts with this wind producing synchrotron emission. A year of radio observations allows us to probe the progenitor evolution for a thousand years. The EVLA and SKA would represent more than an order of magnitude improvement in our ability to explore the pre-explosion lives of a significantly large population of supernova progenitor stars. It will allow us to move beyond the crude optical classifications and develop a deeper physical understanding of how massive stars live and die.



rate research

Read More

152 - A. Corsi , E. O. Ofek , A. Gal-Yam 2013
We present the discovery, classification, and extensive panchromatic (from radio to X-ray) follow-up observations of PTF11qcj, a supernova discovered by the Palomar Transient Factory. PTF11qcj is located at a distance of dL ~ 124 Mpc. Our observations with the Karl G. Jansky Very Large Array show that this event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated supernova 1998bw (L_{5GHz} ~ 10^{29} erg/s/Hz). PTF11qcj is also detected in X-rays with the Chandra observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the supernova interaction with circumstellar material. The radio observations suggest a progenitor mass-loss rate of ~10^{-4} Msun/yr x (v_w/1000 km/s), and a velocity of ~(0.3-0.5)c for the fastest moving ejecta (at ~10d after explosion). However, these estimates are derived assuming the simplest model of supernova ejecta interacting with a smooth circumstellar material characterized by radial power-law density profile, and do not account for possible inhomogeneities in the medium and asphericity of the explosion. The radio light curve shows deviations from such a simple model, as well as a re-brightening at late times. The X-ray flux from PTF11qcj is compatible with the high-frequency extrapolation of the radio synchrotron emission (within the large uncertainties). An IR light echo from pre-existing dust is in agreement with our infrared data. Our analysis of pre-explosion data from the Palomar Transient Factory suggests that a precursor eruption of absolute magnitude M_r ~ -13 mag may have occurred ~ 2.5 yr prior to the supernova explosion. Based on our panchromatic follow-up campaign, we conclude that PTF11qcj fits the expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may be a feature characterizing the final pre-explosion evolution of such stars.
We report unique EVLA observations of SN 2011fe representing the most sensitive radio study of a Type Ia supernova to date. Our data place direct constraints on the density of the surrounding medium at radii ~10^15-10^16 cm, implying an upper limit on the mass loss rate from the progenitor system of Mdot <~ 6 x 10^-10 Msol/yr (assuming a wind speed of 100 km/s), or expansion into a uniform medium with density n_CSM <~ 6 cm^-3. Drawing from the observed properties of non-conservative mass transfer among accreting white dwarfs, we use these limits on the density of the immediate environs to exclude a phase space of possible progenitors systems for SN 2011fe. We rule out a symbiotic progenitor system and also a system characterized by high accretion rate onto the white dwarf that is expected to give rise to optically-thick accretion winds. Assuming that a small fraction, 1%, of the mass accreted is lost from the progenitor system, we also eliminate much of the potential progenitor parameter space for white dwarfs hosting recurrent novae or undergoing stable nuclear burning. Therefore, we rule out the most popular single degenerate progenitor models for SN 2011fe, leaving a limited phase space inhabited by some double degenerate systems and exotic progenitor scenarios.
135 - D. M.-A. Meyer 2021
A signification fraction of Galactic massive stars (> 8Mo) are ejected from their parent cluster and supersonically sail away through the interstellar medium (ISM). The winds of these fast-moving stars blow asymmetric bubbles thus creating a circumstellar environment in which stars eventually die with a supernova explosion. The morphology of the resulting remnant is largely governed by the circumstellar medium of the defunct progenitor star. In this paper, we present 2D magneto-hydrodynamical simulations investigating the effect of the ISM magnetic field on the shape of the supernova remnants of a 35Mo star evolving through a Wolf-Rayet phase and running with velocity 20 and 40 km/s, respectively. A 7 microG ambient magnetic field is sufficient to modify the properties of the expanding supernova shock front and in particular to prevent the formation of filamentary structures. Prior to the supernova explosion, the compressed magnetic field in the circumstellar medium stabilises the wind/ISM contact discontinuity in the tail of the wind bubble. A consequence is a reduced mixing efficiency of ejecta and wind materials in the inner region of the remnant, where the supernova shock wave propagates. Radiative transfer calculations for synchrotron emission reveal that the non-thermal radio emission has characteristic features reflecting the asymmetry of exiled core-collapse supernova remnants from Wolf-Rayet progenitors. Our models are qualitatively consistent with the radio appearance of several remnants of high-mass progenitors, namely the bilateral G296.5+10.0 and the shell-type remnants CTB109 and Kes 17, respectively.
We undertake a statistical analysis of the radial abundance distributions in the Galactic disk within a theoretical framework for Galactic chemical evolution which incorporates the influence of spiral arms. 1) The mean mass of oxygen ejected per core-collapse SNe (CC SNe) event (which are concentrated within spiral arms) is $sim$0.27 M$_{odot}$; 2) the mean mass of iron ejected by `tardy Type Ia SNe (SNeIa; progenitors of whom are older/longer-lived stars with ages $simgt$100 Myr and up to several Gyr, which do not concentrate within spiral arms) is $sim$0.58 M$_{odot}$; 3) the upper mass of iron ejected by prompt SNeIa (SNe whose progenitors are younger/shorter-lived stars with ages $simlt$100 Myr, which are concentrated within spiral arms) is $leq$0.23 M$_{odot}$ per event; 4) the corresponding mean mass of iron produced by CC SNe is $leq$0.04 M$_{odot}$ per event; (v) short-lived SNe (core-collapse or prompt SNeIa) supply $sim$85% of the Galactic disks iron. The inferred low mean mass of oxygen ejected per CC SNe event implies a low upper mass limit for the corresponding progenitors of $sim$23 M$_{odot}$, otherwise the Galactic disk would be overabundant in oxygen. The low mean mass of iron ejected by prompt SNeIa, relative to the mass produced by tardy SNeIa ($sim$2.5 times lower), prejudices the idea that both sub-populations of SNeIa have the same physical nature. We suggest that, perhaps, prompt SNeIa are more akin to CC SNe, and discuss the implications of such a suggestion.
Long-duration gamma-ray bursts (GRBs) are thought to come from the core-collapse of Wolf-Rayet stars. Whereas their stellar masses $M_*$ have a rather narrow distribution, the population of GRBs is very diverse, with gamma-ray luminosities $L_gamma$ spanning several orders of magnitude. This suggests the existence of a hidden stellar variable whose burst-to-burst variation leads to a spread in $L_gamma$. Whatever this hidden variable is, its variation should not noticeably affect the shape of GRB lightcurves, which display a constant luminosity (in a time-average sense) followed by a sharp drop at the end of the burst seen with Swift/XRT. We argue that such a hidden variable is progenitor stars large-scale magnetic flux. Shortly after the core collapse, most of stellar magnetic flux accumulates near the black hole (BH) and remains there. The flux extracts BH rotational energy and powers jets of roughly a constant luminosity, $L_j$. However, once BH mass accretion rate $dot M$ falls below $sim L_j/c^2$, the flux becomes dynamically important and diffuses outwards, with the jet luminosity set by the rapidly declining mass accretion rate, $L_jsim dot M c^2$. This provides a potential explanation for the sharp end of GRBs and the universal shape of their lightcurves. During the GRB, gas infall translates spatial variation of stellar magnetic flux into temporal variation of $L_j$. We make use of the deviations from constancy in $L_j$ to perform stellar magnetic flux tomography. Using this method, we infer the presence of magnetised tori in the outer layers of progenitor stars for GRB 920513 and GRB 940210.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا