The production of $omega$ mesons in the $pd to{}^3$He$ omega$ reaction has been studied at two energies near the kinematic threshold, $T_p=1450$ MeV and $T_p=1360$ MeV. The differential cross section was measured as a function of the $omega$ cm angle at both energies over the whole angular range. Whereas the results at 1360 MeV are consistent with isotropy, strong rises are observed near both the forward and backward directions at 1450 MeV. Calculations made using a two-step model with an intermediate pion fail to reproduce the shapes of the measured angular distributions and also underestimate the total cross sections.
The tensor polarisation of omega mesons produced in the pd-->3He+omega reaction has been studied at two energies near threshold. The 3He nuclei were detected in coincidence with the pi0pi+pi- or pi0gamma decay products of the omega. In contrast to the case of phi meson production, the omega mesons are found to be unpolarised. This brings into question the applicability of the Okubo-Zweig-Iizuka rule when comparing the production of vector mesons in low energy hadronic reactions.
The cross sections of the pd -> 3He eta, pd -> 3He pi0 pi0 pi0 and pd -> 3He pi+ pi- pi0 reactions have been measured at beam kinetic energies T_p= 1360 MeV and T_p= 1450 MeV using the CELSIUS/WASA detector setup. At both energies, the differential cross section dsigma/dOmega of the eta meson in the pd -> 3He eta reaction shows a strong forward-backward asymmetry in the CMS. The ratio between the pd -> 3He pi+ pi- pi0 and the pd -> 3He pi0 pi0 pi0 cross sections has been analysed in terms of isospin amplitudes. The reconstructed invariant mass distributions of the pi-pi, 3He-pi and 3He-2pi systems provide hints on the role of nucleon resonances in the 3pi production process.
The cross section for the pd --> ^3He eta pi0 reaction has been measured at a beam energy of 1450 MeV using the WASA detector at the CELSIUS storage ring and detecting one ^3He and four photons from the decays of the two photons. The data indicate that the production mechanism involves the formation of the Delta(1232) isobar. Although the beam energy does not allow the full peak of this resonance to be seen, the invariant masses of all three pairs of final state particles are well reproduced by a phase space Monte Carlo simulation weighted with the p-wave factor of the square of the pi^0 momentum in the ^3Hepi^0 system.
The first measurement of the p n -> d omega total cross section has been achieved at mean excess energies of Q = 28 and 57 MeV by using a deuterium cluster-jet target. The momentum of the fast deuteron was measured in the ANKE spectrometer at COSY-Juelich and that of the slow spectator proton p(sp) from the p d -> p(sp) d omega reaction in a silicon telescope placed close to the target. The cross sections lie above those measured for p p -> p p omega but seem to be below theoretical predictions.
The total cross section for omega production in the pp -> pp omega reaction has been measured at five c.m. excess energies from 3.8 to 30 MeV. The energy dependence is easily understood in terms of a strong proton-proton final state interaction combined with a smearing over the width of the state. The ratio of near-threshold phi and omega production is consistent with the predictions of a one-pion-exchange model and the degree of violation of the OZI rule is similar to that found in the pi-p -> n omega/phi reactions.
K. Schonning
,Chr. Bargholtz
,M. Bashkanov
.
(2009)
.
"Production of the omega meson in the pd --> 3He omega reaction at 1450 MeV and 1360 MeV"
.
Karin Schoenning
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا