No Arabic abstract
Low-metallicity (Z <~ 0.05 Zsun) massive (>~40 Msun) stars might end their life by directly collapsing into massive black holes (BHs, 30 <~ m_BH/Msun <~ 80). More than ~10^5 massive BHs might have been generated via this mechanism in the metal-poor ring galaxy Cartwheel, during the last ~10^7 yr. We show that such BHs might power most of the ultra-luminous X-ray sources (ULXs) observed in the Cartwheel. We also consider a sample of ULX-rich galaxies and we find a possible anti-correlation between the number of ULXs per galaxy and the metallicity in these galaxies. However, the data are not sufficient to draw any robust conclusions about this anti-correlation, and further studies are required.
Many upcoming surveys, particularly in the radio and optical domains, are designed to probe either the temporal and/or the spatial variability of a range of astronomical objects. In the light of these high resolution surveys, we review the subject of ultra-luminous X-ray (ULX) sources, which are thought to be accreting black holes for the most part. We also discuss the sub-class of ULXs known as the hyper-luminous X-ray sources, which may be accreting intermediate mass black holes. We focus on some of the open questions that will be addressed with the new facilities, such as the mass of the black hole in ULXs, their temporal variability and the nature of the state changes, their surrounding nebulae and the nature of the region in which ULXs reside.
We present the results of deep optical spectroscopic observations using the LRIS spectrograph on the Keck I 10-m telescope of three ultra-luminous X-ray sources (ULXs), Ho IX X-1; M81 X-6; and Ho II X-1. Our observations reveal the existence of large (100 - 200 pc diameter) highly-ionized nebulae, identified by diffuse He II (4686 Angstrom) emission, surrounding these sources. Our results are the first to find highly-ionized nebulae of this extent, and the detection in all three objects indicates this may be a common feature of ULXs. In addition to the extended emission, Ho IX X-1 has an unresolved central component containing about one-third of the total He II flux, with a significant velocity dispersion of ~ 370 km/s, suggestive of the existence of a photo-ionized accretion disk or an extremely hot early-type stellar counterpart. Most of the He II emission appears to be surrounded by significantly more extended Hbeta emission, and the intensity ratios between the two lines, which range from 0.12 - 0.33, indicate that photo-ionization is the origin of the He II emission. Sustaining these extended nebulae requires substantial X-ray emission, in the range ~ 10^{39} - 10^{40} ergs/s, comparable to the measured X-ray luminosities of the sources. This favors models where the X-ray emission is isotropic, rather than beamed, which includes the interpretation that ULXs harbor intermediate-mass black holes.
Gravitational waves from the binary black hole (BH) merger GW150914 may enlighten our understanding of ultra-luminous X-ray sources (ULXs), as BHs>30Msun can reach luminosities>4x10^39 erg s^-1 without exceeding their Eddington limit. It is then important to study variations of evolutionary channels for merging BHs, which might instead form accreting BHs and become ULXs. It was recently shown that massive binaries with mass ratios close to unity and tight orbits can undergo efficient rotational mixing and evolve chemically homogeneously, resulting in a compact BH binary. We study similar systems by computing ~120000 detailed binary models with the MESA code covering a wide range of initial parameters. For initial mass ratios M2/M1~0.1-0.4, primaries >40Msun can evolve chemically homogeneously, remaining compact and forming a BH without undergoing Roche-lobe overflow. The secondary then expands and transfers mass to the BH, initiating a ULX phase. We predict that ~1 out of 10^4 massive stars evolves this way, and that in the local universe 0.13 ULXs per Msun yr^-1 of star-formation rate are observable, with a strong preference for low-metallicities. At metallicities log Z>-3, BH masses in ULXs are limited to 60Msun due to the occurrence of pair-instability supernovae which leave no remnant, resulting in an X-ray luminosity cut-off. At lower metallicities, very massive stars can avoid exploding as pair-instability supernovae and instead form BHs with masses above 130Msun, producing a gap in the ULX luminosity distribution. After the ULX phase, neutron-star-BH binaries that merge in less than a Hubble time are produced with a formation rate <0.2 Gpc^-3 yr^-1. We expect that upcoming X-ray observatories will test these predictions, which together with additional gravitational wave detections will provide strict constraints on the origin of the most massive BHs that can be produced by stars.
The nature of ultra-luminous X-ray sources (ULXs), which are off-nuclear extragalactic X-ray sources that exceed the Eddington luminosity for a stellar-mass black hole, is still largely unknown. They might be black hole X-ray binaries in a super-Eddington accretion state, possibly with significant beaming of their emission, or they might harbor a black hole of intermediate mass (10^2 to 10^5 solar masses). Due to the enormous amount of energy radiated, ULXs can have strong interactions with their environment, particularly if the emission is not beamed and if they host a massive black hole. We present early results of a project that uses archival Herschel infrared observations of galaxies hosting bright ULXs in order to constrain the nature of the environment surrounding the ULXs and possible interactions. We already observe a spatial correlation between ULXs and dense clouds of cold material, that will be quantified in subsequent work. Those observations will allow us to test the similarities with the environment of Galactic high mass X-ray binaries. This project will also shed light on the nature of the host galaxies, and the possible factors that could favor the presence of a ULX in a galaxy.
A puzzling class of exotic objects, which have been known about for more than 30 years, is reaching a new era of understanding. We have discovered hundreds of Ultra Luminous X-ray sources (ULXs) - non-nuclear sources with X-ray luminosity in excess of the Eddington luminosity for normal size stellar Black Holes (BH) - and we are making progresses towards understanding their emission mechanisms. The current explanations imply either a peculiar state of accretion onto a stellar size BH or the presence of an intermediate mass BH, the long-sought link between stellar and supermassive BHs. Both models might co-exist and therefore studying this class of object will give insight into the realm of accretion in a variety of environments and at the same time find look-alikes of the primordial seed BHs that are thought to be at the origin of todays supermassive BHs at the centre of galaxies. The radio band has been exploited only scantily due to the relative faint fluxes of the sources, but we know a number of interesting sources exhibiting both extended emission (like bubbles and possibly jets) and cores, as well as observed transient behaviour. The new eras of the SKA will lead us to a major improvement of our insight of the extreme accretion within ULXs. We will both investigate in detail known sources and research new and fainter ones. When we have reached a thorough understanding of radio emission in ULX we could also use the SKA as a discovery instrument for new ULX candidates. The new array will give an enormous space to discovery: sources like the ones currently known will be detected in a snapshot up to 50 Mpc instead of at 5 Mpc with long, pointed observations.