Do you want to publish a course? Click here

Shot noise in electron transport through a double quantum dot: A master equation approach

156   0   0.0 ( 0 )
 Added by Shi-Hua Ouyang
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study shot noise in tunneling current through a double quantum dot connected to two electric leads. We derive two master equations in the occupation-state basis and the eigenstate basis to describe the electron dynamics. The approach based on the occupation-state basis, despite widely used in many previous studies, is valid only when the interdot coupling strength is much smaller than the energy difference between the two dots. In contrast, the calculations using the eigenstate basis are valid for an arbitrary interdot coupling. We show that the master equation in the occupation-state basis includes only the low-order terms with respect to the interdot coupling compared with the more accurate master equation in the eigenstate basis. Using realistic model parameters, we demonstrate that the predicted currents and shot-noise properties from the two approaches are significantly different when the interdot coupling is not small. Furthermore, properties of the shot noise predicted using the eigenstate basis successfully reproduce qualitative features found in a recent experiment.



rate research

Read More

Electron transport properties in a parallel double-quantum-dot structure with three-terminals are theoretically studied. By introducing a local Rashba spin-orbit coupling, we find that an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state. As a result, spin polarization and spin separation can be simultaneously realized in this structure. And spin polarizations in different terminals can be inverted by tuning the structure parameters. The underlying quantum interference that gives rise to such a result is analyzed in the language of Feynman paths for the electron transmission.
We study electron transport through a quantum dot, connected to non-magnetic leads, in a magnetic field. A super-Poissonian electron noise due to the effects of both interacting localized states and dynamic channel blockade is found when the Coulomb blockade is partially lifted. This is sharp contrast to the sub-Poissonian shot noise found in the previous studies for a large bias voltage, where the Coulomb blockade is completely lifted. Moreover, we show that the super-Poissonian shot noise can be suppressed by applying an electron spin resonance (ESR) driving field. For a sufficiently strong ESR driving field strength, the super-Poissonian shot noise will change to be sub-Poissonian.
156 - H. W. Liu , T. Fujisawa , Y. Ono 2008
We present measurements of resonant tunneling through discrete energy levels of a silicon double quantum dot formed in a thin silicon-on-insulator layer. In the absence of piezoelectric phonon coupling, spontaneous phonon emission with deformation-potential coupling accounts for inelastic tunneling through the ground states of the two dots. Such transport measurements enable us to observe a Pauli spin blockade due to effective two-electron spin-triplet correlations, evident in a distinct bias-polarity dependence of resonant tunneling through the ground states. The blockade is lifted by the excited-state resonance by virtue of efficient phonon emission between the ground states. Our experiment demonstrates considerable potential for investigating silicon-based spin dynamics and spin-based quantum information processing.
94 - C. Schinabeck , M. Thoss 2019
We present a hierarchical quantum master equation (HQME) approach, which allows the numerically exact evaluation of higher-order current cumulants in the framework of full counting statistics for nonequilibrium charge transport in nanosystems. The novel methodology is exemplarily applied to a model of vibrationally coupled electron transport in a molecular nanojunction. We investigate the influence of cotunneling on avalanche-like transport, in particular in the nonresonant transport regime, where we find that inelastic cotunneling acts as trigger process for resonant avalanches. In this regime, we also demonstrate that the correction to the elastic noise upon opening of the inelastic transport channel is strongly affected by the nonequilibrium excitation of the vibration as well as the polaron shift.
Within the hierarchical quantum master equation (HQME) framework, an approach is presented, which allows a numerically exact description of nonequilibrium charge transport in nanosystems with strong electronic-vibrational coupling. The method is applied to a generic model of vibrationally coupled transport considering a broad spectrum of parameters ranging from the nonadiabatic to the adiabatic regime and including both resonant and off-resonant transport. We show that nonequilibrium effects are important in all these regimes. In particular in the off-resonant transport regime, the inelastic co-tunneling signal is analyzed for a vibrational mode in full nonequilibrium, revealing a complex interplay of different transport processes and deviations from the commonly used $G_0/2$-thumb-rule. In addition, the HQME-approach is used to benchmark approximate master equation and nonequilibrium Greens function methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا