On the description of Leibniz superalgebras of nilindex n+m


Abstract in English

In this work we investigate the complex Leibniz superalgebras with characteristic sequence $(n_1,...,n_k|m)$ and nilindex n+m, where $n=n_1+...+n_k,$ n and m (m is not equal to zero) are dimensions of even and odd parts, respectively. Such superalgebras with condition n_1 > n-2 were classified in cite{FilSup}--cite{C-G-O-Kh}. Here we prove that in the case $n_1 < n-1$ the Leibniz superalgebras have nilindex less than $n+m.$ Thus, we get the classification of Leibniz superalgebras with characteristic sequence $(n_1, ...,n_k|m)$ and nilindex n+m.

Download