No Arabic abstract
We present a novel computational methodology for solving the scalar nonlinear Helmholtz equation (NLH) that governs the propagation of laser light in Kerr dielectrics. The methodology addresses two well-known challenges in nonlinear optics: Singular behavior of solutions when the scattering in the medium is assumed predominantly forward (paraxial regime), and the presence of discontinuities in the % linear and nonlinear optical properties of the medium. Specifically, we consider a slab of nonlinear material which may be grated in the direction of propagation and which is immersed in a linear medium as a whole. The key components of the methodology are a semi-compact high-order finite-difference scheme that maintains accuracy across the discontinuities and enables sub-wavelength resolution on large domains at a tolerable cost, a nonlocal two-way artificial boundary condition (ABC) that simultaneously facilitates the reflectionless propagation of the outgoing waves and forward propagation of the given incoming waves, and a nonlinear solver based on Newtons method. The proposed methodology combines and substantially extends the capabilities of our previous techniques built for 1Dand for multi-D. It facilitates a direct numerical study of nonparaxial propagation and goes well beyond the approaches in the literature based on the augmented paraxial models. In particular, it provides the first ever evidence that the singularity of the solution indeed disappears in the scalar NLH model that includes the nonparaxial effects. It also enables simulation of the wavelength-width spatial solitons, as well as of the counter-propagating solitons.
The nonlinear Helmholtz equation (NLH) models the propagation of electromagnetic waves in Kerr media, and describes a range of important phenomena in nonlinear optics and in other areas. In our previous work, we developed a fourth order method for its numerical solution that involved an iterative solver based on freezing the nonlinearity. The method enabled a direct simulation of nonlinear self-focusing in the nonparaxial regime, and a quantitative prediction of backscattering. However, our simulations showed that there is a threshold value for the magnitude of the nonlinearity, above which the iterations diverge. In this study, we numerically solve the one-dimensional NLH using a Newton-type nonlinear solver. Because the Kerr nonlinearity contains absolute values of the field, the NLH has to be recast as a system of two real equations in order to apply Newtons method. Our numerical simulations show that Newtons method converges rapidly and, in contradistinction with the iterations based on freezing the nonlinearity, enables computations for very high levels of nonlinearity. In addition, we introduce a novel compact finite-volume fourth order discretization for the NLH with material discontinuities.The one-dimensional results of the current paper create a foundation for the analysis of multi-dimensional problems in the future.
In this paper we show some exact solutions for the general fifth order KdV equation. These solutions are obtained by the extended tanh method.
We have constructed a sequence of solutions of the Helmholtz equation forming an orthogonal sequence on a given surface. Coefficients of these functions depend on an explicit algebraic formulae from the coefficient of the surface. Moreover, for exterior Helmholtz equation we have constructed an explicit normal derivative of the Dirichlet Green function. In the same way the Dirichlet-to-Neumann operator is constructed. We proved that normalized coefficients are uniformly bounded from zero.
In this paper an exact transparent boundary condition (TBC) for the multidimensional Schrodinger equation in a hyperrectangular computational domain is proposed. It is derived as a generalization of exact transparent boundary conditions for 2D and 3D equations reported before. A new exact fully discrete (i.e. derived directly from the finite-difference scheme used) 1D transparent boundary condition is also proposed. Several numerical experiments using an improved unconditionally stable numerical implementation in the 3D space demonstrate propagation of Gaussian wave packets in free space and penetration of a particle through a 3D spherically asymmetrical barrier. The application of the multidimensional transparent boundary condition to the dynamics of the 2D system of two non-interacting particles is considered. The proposed boundary condition is simple, robust and can be useful in the field of computational quantum mechanics, when an exact solution of the multidimensional Schrodinger equation (including multi-particle problems) is required.
A systematic construction of a Lax pair and an infinite set of conservation laws for the Ernst equation is described. The matrix form of this equation is rewritten as a differential ideal of gl(2,R)-valued differential forms, and its symmetry condition is expressed as an exterior equation which is linear in the symmetry characteristic and has the form of a conservation law. By means of a recursive process, an infinite collection of such laws is then obtained, and the conserved charges are used to derive a linear exterior equation whose components constitute a Lax pair.