No Arabic abstract
We present results from simulations of the extragalactic polarized sky at 1.4 GHz. As the basis for our polarization models, we use a semi-empirical simulation of the extragalactic total intensity (Stokes I) continuum sky developed at the University of Oxford (http://scubed.physics.ox.ac.uk) under the European SKA Design Study (SKADS) initiative, and polarization distributions derived from analysis of polarization observations. By considering a luminosity dependence for the polarization of AGN, we are able to fit the 1.4 GHz polarized source counts derived from the NVSS and the DRAO ELAIS N1 deep field survey down to approximately 1 mJy. This trend is confirmed by analysis of the polarization of a complete sample of bright AGN. We are unable to fit the additional flattening of the polarized source counts from the deepest observations of the ELAIS N1 survey, which go down to ~0.5 mJy. Below 1 mJy in Stokes I at 1.4 GHz, starforming galaxies become an increasingly important fraction of all radio sources. We use a spiral galaxy integrated polarization model to make realistic predictions of the number of polarized sources at microJy levels in polarized flux density and hence, realistic predictions of what the next generation radio telescopes such as ASKAP, other SKA pathfinders and the SKA itself will see.
A new polarization survey of the northern sky at 1.41 GHz is presented. The observations were carried out using the 25.6m telescope at the Dominion Radio Astrophysical Observatory in Canada, with an angular resolution of 36 arcmin. The data are corrected for ground radiation to obtain Stokes U and Q maps on a well-established intensity scale tied to absolute determinations of zero levels, containing emission structures of large angular extent, with an rms noise of 12 mK. Survey observations were carried out by drift scanning the sky between -29 degr and +90 degr declination. The fully sampled drift scans, observed in steps of 0.25 degr to 2.5 degr in declination, result in a northern sky coverage of 41.7% of full Nyquist sampling. The survey surpasses by a factor of 200 the coverage, and by a factor of 5 the sensitivity, of the Leiden/Dwingeloo polarization survey (Spoelstra 1972) that was until now the most complete large-scale survey. The temperature scale is tied to the Effelsberg scale. Absolute zero-temperature levels are taken from the Leiden/Dwingeloo survey after rescaling those data by the factor of 0.94. The paper describes the observations, data processing, and calibration steps. The data are publicly available at http://www.mpifr-bonn.mpg.de/div/konti/26msurvey or http://www.drao.nrc.ca/26msurvey.
Polarized diffuse emission observations at 1.4-GHz in a high Galactic latitude area of the northern Celestial hemisphere are presented. The 3.2 X 3.2 deg^2 field, centred at RA = 10h 58m, Dec = +42deg 18 (B1950), has Galactic coordinates l~172deg, b~+63deg and is located in the region selected as northern target of the BaR-SPOrt experiment. Observations have been performed with the Effelsberg 100-m telescope. We find that the angular power spectra of the E- and B-modes have slopes of beta_E = -1.79 +/- 0.13 and beta_B = -1.74 +/- 0.12, respectively. Because of the very high Galactic latitude and the smooth emission, a weak Faraday rotation action is expected, which allows both a fair extrapolation to Cosmic Microwave Background Polarization (CMBP) frequencies and an estimate of the contamination by Galactic synchrotron emission. We extrapolate the E-mode spectrum up to 32-GHz and confirm the possibility to safely detect the CMBP E-mode signal in the Ka band found in another low emission region (Carretti et al. 2005b). Extrapolated up to 90-GHz, the Galactic synchrotron B-mode looks to compete with the cosmic signal only for models with a tensor-to-scalar perturbation power ratio T/S < 0.001, which is even lower than the T/S value of 0.01 found to be accessible in the only other high Galactic latitude area investigated to date. This suggests that values as low as T/S = 0.01 might be accessed at high Galactic latitudes. Such low emission values can allow a significant red-shift of the best frequency to detect the CMBP B-mode, also reducing the contamination by Galactic dust, and opening interesting perspectives to investigate Inflation models.
We aim to study the nature of the faint, polarised radio source population whose source composition and redshift dependence contain information about the strength, morphology, and evolution of magnetic fields over cosmic timescales. We use a 15 pointing radio continuum L-band mosaic of the Lockman Hole, observed in full polarisation, generated from archival data of the WSRT. The data were analysed using the RM-Synthesis technique. We achieved a noise of 7 {mu}Jy/beam in polarised intensity, with a resolution of 15. Using infrared and optical images and source catalogues, we were able to cross-identify and determine redshifts for one third of our detected polarised sources. We detected 150 polarised sources, most of which are weakly polarised with a mean fractional polarisation of 5.4 %. With a total area of 6.5 deg^2 and a detection threshold of 6.25 {sigma} we find 23 polarised sources per deg^2. Based on our multi wavelength analysis, we find that our sample consists of AGN only. We find a discrepancy between archival number counts and those present in our data, which we attribute to sample variance. Considering the absolute radio luminosty, to distinguish weak and strong sources, we find a general trend of increased probability to detect weak sources at low redshift and strong sources at high redshift. Further, we find an anti-correlation between fractional polarisation and redshift for our strong sources sample at z{geq}0.6. A decrease in the fractional polarisation of strong sources with increasing redshift cannot be explained by a constant magnetic field and electron density over cosmic scales, however the changing properties of cluster environments over the cosmic timemay play an important role. Disentangling these two effects requires deeper and wider polarisation observations, and better models of the morphology and strength of cosmic magnetic fields.
We present a high-resolution radio survey of the Sloan Digital Sky Survey (SDSS) Southern Equatorial Stripe, a.k.a. Stripe 82. This 1.4 GHz survey was conducted with the Very Large Array (VLA) primarily in the A-configuration, with supplemental B-configuration data to increase sensitivity to extended structure. The survey has an angular resolution of 1.8 and achieves a median rms noise of 52 microJy/bm over 92 deg^2. This is the deepest 1.4 GHz survey to achieve this large of an area, filling a gap in the phase space between small, deep and large, shallow surveys. It also serves as a pilot project for a larger high-resolution survey with the Expanded Very Large Array (EVLA). We discuss the technical design of the survey and details of the observations, and we outline our method for data reduction. We present a catalog of 17,969 isolated radio components, for an overall source density of ~195 sources/deg^2. The astrometric accuracy of the data is excellent, with an internal check utilizing multiply-observed sources yielding an rms scatter of 0.19 in both right ascension and declination. A comparison to the SDSS DR7 Quasar Catalog further confirms that the astrometry is well tied to the optical reference frame, with mean offsets of 0.02 +/- 0.01 in right ascension, and 0.01 +/- 0.02 in declination. A check of our photometry reveals a small, negative CLEAN-like bias on the level of 35 microJy. We report on the catalog completeness, finding that 97% of FIRST-detected quasars are recovered in the new Stripe 82 radio catalog, while faint, extended sources are more likely to be resolved out by the resolution bias. We conclude with a discussion of the optical counterparts to the catalog sources, including 76 newly-detected radio quasars. The full catalog as well as a search page and cutout server are available online at http://third.ucllnl.org/cgi-bin/stripe82cutout.
We present results of deep polarization imaging at 1.4 GHz with the Dominion Radio Astrophysical Observatory as part of the DRAO Planck Deep Fields project. This deep extragalactic field covers 15.16 square degrees centered at RA = 16h 14m and DEC = 54d 56, has an angular resolution of 42 x 62 at the field center, and reaches a sensitivity of 55 microJy/beam in Stokes I and 45 microJy/beam in Stokes Q and U. We detect 958 radio sources in Stokes I of which 136 are detected in polarization. We present the Euclidean-normalized polarized differential source counts down to 400 microJy. These counts indicate that sources have a higher degree of fractional polarization at fainter Stokes I flux density levels than for brighter sources, confirming an earlier result. We find that the majority of our polarized sources are steep-spectrum objects with a mean spectral index of -0.77, and there is no correlation between fractional polarization and spectral index. We also matched deep field sources to counterparts in the Faint Images of the Radio Sky at Twenty Centimeters catalogue. Of the polarized sources, 77% show structure at the arc-second scale whereas only 38% of the sources with no detectable polarization show such structure. The median fractional polarization is for resolved sources is 6.8%, while it is 4.4% for compact objects. The polarized radio sources in our deep field are predominantly those sources which are resolved and show the highest degrees of fractional polarization, indicating that the lobe dominated structure may be the source of the highly polarized sources. These resolved radio galaxies dominate the polarized source counts at P_0 = sqrt(Q^2 + U^2) < 3 mJy.