Effective Polymer Dynamics of D-Dimensional Black Hole Interiors


Abstract in English

We consider two different effective polymerization schemes applied to D-dimensional, spherically symmetric black hole interiors. It is shown that polymerization of the generalized area variable alone leads to a complete, regular, single-horizon spacetime in which the classical singularity is replaced by a bounce. The bounce radius is independent of rescalings of the homogeneous internal coordinate, but does depend on the arbitrary fiducial cell size. The model is therefore necessarily incomplete. It nonetheless has many interesting features: After the bounce, the interior region asymptotes to an infinitely expanding Kantowski-Sachs spacetime. If the solution is analytically continued across the horizon, the black hole exterior exhibits asymptotically vanishing quantum-corrections due to the polymerization. In all spacetime dimensions except four, the fall-off is too slow to guarantee invariance under Poincare transformations in the exterior asymptotic region. Hence the four-dimensional solution stands out as the only example which satisfies the criteria for asymptotic flatness. In this case it is possible to calculate the quantum-corrected temperature and entropy. We also show that polymerization of both phase space variables, the area and the conformal mode of the metric, generically leads to a multiple horizon solution which is reminiscent of polymerized mini-superspace models of spherically symmetric black holes in Loop Quantum Gravity.

Download