Do you want to publish a course? Click here

Superconducting fluctuations in the reversible magnetization of the iron-pnictide $Ba_{1-x}K_xFe_2As_2$

139   0   0.0 ( 0 )
 Added by Said Salem Sugui jr
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on isofield magnetization curves obtained as a function of temperature in two single crystals of $Ba_{1-x}K_xFe_2As_2$ with superconducting transition temperature $T_c$=28K and 32.7 K. Results obtained for fields above 20 kOe show a well defined rounding effect on the reversible region extending 1-3 K above $T_c(H)$ masking the transition. This rounding appears to be due to three-dimensional critical fluctuations, as the higher field curves obey a well know scaling law for this type of critical fluctuations. We also analysed the asymptotic behavior of $sqrt M$vs.T curves in the reversible region which probes the shape of the gap near $T_c(H)$. Results of the analysis suggests that phase fluctuations are important in $Ba_{1-x}K_xFe_2As_2$ which is consistent with nodes in the gap.



rate research

Read More

125 - Andreas Heimes , Roland Grein , 2010
The pairing mechanism in the iron-pnictide superconductors is still unknown. However, similarities to the cuprate high-temperature superconductors suggest that a similar mechanism may be at work. Recently, careful experimental studies of the spin excitation spectrum revealed, like in the cuprates, a strong temperature dependence in the normal state and a resonance feature in the superconducting state. Motivated by these findings, we develop a model of electrons interacting with a temperature dependent magnetic excitation spectrum based on these experimental observations. We apply it to analyse angle resolved photoemission and tunnelling spectra in Ba{1-x}KxFe2As2. We reproduce in quantitative agreement with experiment a renormalisation of the quasiparticle dispersion both in the normal and the superconducting state, and the dependence of the quasiparticle linewidth on binding energy. We estimate the strength of the coupling between electronic and spin excitations. Our findings support the possibility of a pairing mechanism based dominantly on such a coupling.
Resolving the microscopic pairing mechanism and its experimental identification in unconventional superconductors is among the most vexing problems of contemporary condensed matter physics. We show that Raman spectroscopy provides an avenue for this quest by probing the structure of the pairing interaction at play in an unconventional superconductor. As we study the spectra of the prototypical Fe-based superconductor ${rm Ba_{1-x}K_xFe_2As_2}$ for $0.22le x le 0.70$ in all symmetry channels, Raman spectroscopy allows us to distill the leading $s$-wave state. In addition, the spectra collected in the $B_{1g}$ symmetry channel reveal the existence of two collective modes which are indicative of the presence of two competing, yet sub-dominant, pairing tendencies of $d_{x^2-y^2}$ symmetry type. A comprehensive functional Renormalization Group (fRG) and random-phase approximation (RPA) study on this compound confirms the presence of the two sub-leading channels, and consistently matches the experimental doping dependence of the related modes. The synopsis of experimental evidence and theoretical modelling supports a spin-fluctuation mediated superconducting pairing mechanism.
114 - V.N. Zverev 2009
The transport and superconducting properties of Ba_{1-x}K_xFe_2As_2 single crystals with T_c = 31 K were studied. Both in-plane and out-of plane resistivity was measured by modified Montgomery method. The in-plane resistivity for all studied samples, obtained in the course of the same synthesis, is almost the same, unlike to the out-of plane resistivity, which differ considerably. We have found that the resistivity anisotropy gamma=rho_c /rho_{ab} is almost temperature independent and lies in the range 10-30 for different samples. This, probably, indicates on the extrinsic nature of high out-of-plane resistivity, which may appear due to the presence of the flat defects along Fe-As layers in the samples. This statement is supported by comparatively small effective mass anisotropy, obtained from the upper critical field measurements, and from the observation of the so-called Friedel transition, which indicates on the existence of some disorder in the samples in c-direction.
161 - K. Mydeen , E. Lengyel , Z. Deng 2010
Electrical-resistivity and magnetic-susceptibility measurements under hydrostatic pressure up to p = 2.75 GPa have been performed on superconducting LiFeP. A broad superconducting (SC) region exists in the temperature - pressure (T-p) phase diagram. No indications for a spin-density-wave transition have been found, but an enhanced resistivity coefficient at low pressures hints at the presence of magnetic fluctuations. Our results show that the superconducting state in LiFeP is more robust than in the isostructural and isoelectronic LiFeAs. We suggest that this finding is related to the nearly regular [FeP_4] tetrahedron in LiFeP.
Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba(1-x)K(x)Fe(2)As(2) by means of X-ray powder diffraction, neutron scattering, muon spin rotation (muSR), and magnetic force microscopy (MFM). Commensurate static magnetic order sets in below Tm ~ 70 K as inferred from the emergence of the magnetic (1 0 -3) reflection in the neutron scattering data and from the observation of damped oscillations in the zero-field-muSR asymmetry. Transverse-field muSR below Tc shows a coexistence of magnetically ordered and non-magnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting/normal state regions on a lateral scale of several tens of nanometers. Our findings indicate that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا