Do you want to publish a course? Click here

Physical signatures of discontinuities of the time-dependent exchange-correlation potential

126   0   0.0 ( 0 )
 Added by Carsten A. Ullrich
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The exact exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT) is known to develop steps and discontinuities upon change of the particle number in spatially confined regions or isolated subsystems. We demonstrate that the self-interaction corrected adiabatic local-density approximation for the XC potential has this property, using the example of electron loss of a model quantum well system. We then study the influence of the XC potential discontinuity in a real-time simulation of a dissociation process of an asymmetric double quantum well system, and show that it dramatically affects the population of the resulting isolated single quantum wells. This indicates the importance of a proper account of the discontinuities in TDDFT descriptions of ionization, dissociation or charge transfer processes.



rate research

Read More

We propose a computationally efficient approach to the nonadiabatic time-dependent density functional theory (TDDFT) which is based on a representation of the frequency-dependent exchange correlation kernel as a response of a set of damped oscillators. The requirements to computational resources needed to implement our approach do not differ from those of the standard real-time TDDFT in the adiabatic local density approximation (ALDA). Thus, our result offers an exciting opportunity to take into account temporal nonlocality and memory effects in calculations with TDDFT in quantum chemistry and solid state physics for unprecedentedly low costs.
Small-wavevector excitations in Coulomb-interacting systems can be decomposed into the high-energy collective longitudinal plasmon and the low-energy single-electron excitations. At the critical wavevector and corresponding frequency where the plasmon branch merges with the single-electron excitation region, the collective energy of the plasmon dissipates into single electron-hole excitations. The jellium model provides a reasonable description of the electron-energy-loss spectrum (EELS) of metals close to the free-electron limit. The random phase approximation (RPA) is exact in the high-density limit but can capture the plasmonic dispersion reasonably even for densities with rs > 1. RPA and all beyond-RPA methods investigated here, result in a wrong infinite plasmon lifetime for a wavevector smaller than the critical one where the plasmon dispersion curve runs into particle-hole excitations. Exchange-correlation kernel corrections to RPA modify the plasmon dispersion curve. There is however a large difference in the construction and form of the kernels investigated earlier. Our current work introduces recent model exchange-only and exchange-correlation kernels and discusses the relevance of some exact constraints in the construction of the kernel. We show that, because the plasmon dispersion samples a range of wavevectors smaller than the range sampled by the correlation energy, different kernels can make a strong difference for the correlation energy and a weak difference for the plasmon dispersion. This work completes our understanding about the plasmon dispersion in realistic metals, such as Cs, where a negative plasmon dispersion has been observed. We find only positive plasmon dispersion in jellium at the density for Cs.
180 - Carsten A. Ullrich 2018
A new class of orbital-dependent exchange-correlation (xc) potentials for applications in noncollinear spin-density-functional theory is developed. Starting from the optimized effective potential (OEP) formalism for the exact exchange potential - generalized to the noncollinear case - correlation effects are added via a self-consistent procedure inspired by the Singwi-Tosi-Land-Sjolander (STLS) method. The orbital-dependent xc potentials are applied to the Hubbard dimer in uniform and noncollinear magnetic fields and compared to exact diagonalization and to the Bethe-ansatz local spin-density approximation. The STLS gives the overall best performance for total energies, densities and magnetizations, particularly in the weakly to moderately correlated regime.
We train a neural network as the universal exchange-correlation functional of density-functional theory that simultaneously reproduces both the exact exchange-correlation energy and potential. This functional is extremely non-local, but retains the computational scaling of traditional local or semi-local approximations. It therefore holds the promise of solving some of the delocalization problems that plague density-functional theory, while maintaining the computational efficiency that characterizes the Kohn-Sham equations. Furthermore, by using automatic differentiation, a capability present in modern machine-learning frameworks, we impose the exact mathematical relation between the exchange-correlation energy and the potential, leading to a fully consistent method. We demonstrate the feasibility of our approach by looking at one-dimensional systems with two strongly-correlated electrons, where density-functional methods are known to fail, and investigate the behavior and performance of our functional by varying the degree of non-locality.
We demonstrate the magnetization reversal features in NiFe/IrMn/NiFe thin-film structures with 40% and 75% relative content of Ni in Permalloy in the temperature range from 80 K to 300 K. At the descending branches of the hysteresis loops, the magnetization reversal sequence of the two ferromagnetic layers is found to depend on the type of NiFe alloy. In the samples with 75% relative content of Ni, the bottom ferromagnetic layer reverses prior to the top one. On the contrary, in the samples with 40% of Ni, the top ferromagnetic layer reverses prior to the bottom one. These tendencies of magnetization reversal are preserved in the entire range of temperatures. These distinctions can be explained by the morphological and structural differences of interfaces in the samples based on two types of Permalloy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا