Do you want to publish a course? Click here

Backbone of complex networks of corporations: The flow of control

147   0   0.0 ( 0 )
 Added by James Glattfelder B
 Publication date 2009
  fields Financial Physics
and research's language is English




Ask ChatGPT about the research

We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.



rate research

Read More

We detect the backbone of the weighted bipartite network of the Japanese credit market relationships. The backbone is detected by adapting a general method used in the investigation of weighted networks. With this approach we detect a backbone that is statistically validated against a null hypothesis of uniform diversification of loans for banks and firms. Our investigation is done year by year and it covers more than thirty years during the period from 1980 to 2011. We relate some of our findings with economic events that have characterized the Japanese credit market during the last years. The study of the time evolution of the backbone allows us to detect changes occurred in network size, fraction of credit explained, and attributes characterizing the banks and the firms present in the backbone.
Global supply networks in agriculture, manufacturing, and services are a defining feature of the modern world. The efficiency and the distribution of surpluses across different parts of these networks depend on choices of intermediaries. This paper conducts price formation experiments with human subjects located in large complex networks to develop a better understanding of the principles governing behavior. Our first finding is that prices are larger and that trade is significantly less efficient in small-world networks as compared to random networks. Our second finding is that location within a network is not an important determinant of pricing. An examination of the price dynamics suggests that traders on cheapest -- and hence active -- paths raise prices while those off these paths lower them. We construct an agent-based model (ABM) that embodies this rule of thumb. Simulations of this ABM yield macroscopic patterns consistent with the experimental findings. Finally, we extrapolate the ABM on to significantly larger random and small world networks and find that network topology remains a key determinant of pricing and efficiency.
A large number of complex systems find a natural abstraction in the form of weighted networks whose nodes represent the elements of the system and the weighted edges identify the presence of an interaction and its relative strength. In recent years, the study of an increasing number of large scale networks has highlighted the statistical heterogeneity of their interaction pattern, with degree and weight distributions which vary over many orders of magnitude. These features, along with the large number of elements and links, make the extraction of the truly relevant connections forming the networks backbone a very challenging problem. More specifically, coarse-graining approaches and filtering techniques are at struggle with the multiscale nature of large scale systems. Here we define a filtering method that offers a practical procedure to extract the relevant connection backbone in complex multiscale networks, preserving the edges that represent statistical significant deviations with respect to a null model for the local assignment of weights to edges. An important aspect of the method is that it does not belittle small-scale interactions and operates at all scales defined by the weight distribution. We apply our method to real world network instances and compare the obtained results with alternative backbone extraction techniques.
We consider a dynamical model of distress propagation on complex networks, which we apply to the study of financial contagion in networks of banks connected to each other by direct exposures. The model that we consider is an extension of the DebtRank algorithm, recently introduced in the literature. The mechanics of distress propagation is very simple: When a bank suffers a loss, distress propagates to its creditors, who in turn suffer losses, and so on. The original DebtRank assumes that losses are propagated linearly between connected banks. Here we relax this assumption and introduce a one-parameter family of non-linear propagation functions. As a case study, we apply this algorithm to a data-set of 183 European banks, and we study how the stability of the system depends on the non-linearity parameter under different stress-test scenarios. We find that the system is characterized by a transition between a regime where small shocks can be amplified and a regime where shocks do not propagate, and that the overall stability of the system increases between 2008 and 2013.
Technological improvement is the most important cause of long-term economic growth, but the factors that drive it are still not fully understood. In standard growth models technology is treated in the aggregate, and a main goal has been to understand how growth depends on factors such as knowledge production. But an economy can also be viewed as a network, in which producers purchase goods, convert them to new goods, and sell them to households or other producers. Here we develop a simple theory that shows how the network properties of an economy can amplify the effects of technological improvements as they propagate along chains of production. A key property of an industry is its output multiplier, which can be understood as the average number of production steps required to make a good. The model predicts that the output multiplier of an industry predicts future changes in prices, and that the average output multiplier of a country predicts future economic growth. We test these predictions using data from the World Input Output Database and find results in good agreement with the model. The results show how purely structural properties of an economy, that have nothing to do with innovation or human creativity, can exert an important influence on long-term growth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا