We measure the physical properties of a local multi-component absorption-line system at V_sol ~ 200 km/s toward the quasar PKS0312-770 behind the Magellanic Bridge (MB) using Hubble Space Telescope STIS spectroscopy in conjunction with photoionization modeling. At an impact parameter of ~ 10 kpc from the Small Magellanic Cloud (SMC), this sightline provides a unique opportunity to probe the chemical properties and ionization structure in a nearby absorption line system with a column density of logN(HI) ~ 20.2, at the transition between Damped Lyman Alpha (DLA) and sub-DLA systems. We find that metallicity of -1.0 < logZ < -0.5 and ionization parameter of -6 < logU < -5 for three low-ionization components and logU ~ -2.6 for one high-ionization component. One component at V_sol = 207 km/s shows an alpha-element abundance log(Si/H) ~ -5.0, making it ~ 0.2 dex more metal rich than both SMC H II regions and stars within the MB and the SMC. The N/Si ratio in this component is log(N/Si) = -0.3+/-0.1, making it comparable to other N-poor dwarf galaxies and ~ 0.2 dex lower than H II regions in the SMC. Another component at V_sol = 236 km/s shows a similar Si/H ratio but has log(N/Si) = -1.0+/-0.2, indicating a nitrogen deficiency comparable to that seen in the most N-poor DLA systems. These differences imply different chemical enrichment histories between components along the same sightline. Our results suggest that, if these absorbers are representative some fraction of DLA systems, then 1) DLA systems along single sight-lines do not necessarily represent the global properties of the absorbing cloud, and b) the chemical composition within a given DLA cloud may be inhomogeneous.