No Arabic abstract
We present the results of magnetic measurements on Nd6Co(1.67)Si3, a compound recently reported to crystallize in a hexagonal structure (space group P6_3/m) and to undergo long range magnetic ordering below 84 K. The results reveal that the magnetism of this compound is quite complex with additional magnetic anomalies near 50 and 20 K. There are qualitative changes in the isothermal magnetization behavior with the variation of temperature. Notably, there is a field-induced spin reorientation as the temperature is lowered below 20 K. A finding we stress is that this transition is discontinuous for 1.8K in the virgin curve, but the first order character appears only after a field-cycling for a narrow higher temperature range near 5 K. Thus, this compound serves as an example for the stabilisation of first-order transition induced by magnetic-field-cycling. The issues of Phase co-existence and meta-stability after a field-cycling at low temperatures in this compound are also addressed.
We report that the major features in the temperature dependence of dc and ac magnetization of a well-known spin-chain compound, Ca3Co2O6, which has been known to exhibit two complex magnetic transitions due to geometrical frustration (one near 24 K and the other near 10 K), are found to be qualitatively unaffected in its nano form synthesized by high-energy ball-milling. However, the multiple steps in isothermal magnetization - a topic of current interest in low-dimensional systems - known for the bulk form well below 10 K is absent in the nano particles. We believe that this finding will be useful to the understanding of the step magnetization behavior of such spin-chain systems.
The nature of the low temperature ground state of the pyrochlore compound Tb2Ti2O7 remains a puzzling issue. Dynamic fluctuations and short-range correlations persist down to 50 mK, as evidenced by microscopic probes. In parallel, magnetization measurements show irreversibilities and glassy behavior below 200 mK. We have performed magnetization and AC susceptibility measurements on four single crystals down to 57 mK. We did not observe a clear plateau in the magnetization as a function of field along the [111] direction, as suggested by the quantum spin ice model. In addition to a freezing around 200 mK, slow dynamics are observed in the AC susceptibility up to 4 K. The overall frequency dependence cannot be described by a canonical spin-glass behavior.
We have studied the influence of external pressure up to 1 GPa on the magnetic transitions of the orthorhombic Haldane-spin chain compound Tb2BaNiO5 an exotic multiferroic material. This parent compound is known to undergo Neel ordering at TN1= 63 K and another magnetic transition at TN2= 25K at which ferroelectricity sets in, however, without any change in the magnetic symmetry, but with only a sharp change in the canting angle of Tb 4f and Ni 3d magnetic moments. There is a subtle difference in the antiferromagnetic state above and below TN2, which is supported by the fact that there is a metamagnetic transition below TN2only (for 5 K, at about 60 kOe). We report here that, with the application of external pressure, there is an upward shift of TN1, while TN2 shifts towards lower temperatures. It is interesting that the two magnetic transitions in the same compound behave differently under pressure and the opposite behavior at TN2 is attributed to local distortion leading to ferroelectricity. The results are augmented by temperature dependent x-ray diffraction and positive chemical pressure studies. The chemical pressure caused by the isoelectronic doping at Ba site by Sr reduces both the transition temperatures. Clearly, the external pressure favors antiferromagnetic coupling (that is, leading to TN1 enhancement), whereas the chemical pressure reduces TN1, suggesting important role of the changes in local hybridization induced by doping on magnetism in this material.
A model of a mixture of spinless fermions and spin-zero hardcore bosons, with filling fractions $rho_F$ and $rho_B$, respectively, on a two-dimensional square lattice with {em composite} hopping $t$ is presented. In this model, hopping swaps the locations of a fermion and a boson at nearest-neighbor sites. When $rho_F+rho_B=1$, the fermion hopping amplitude $phi$ and boson superfluid amplitude $psi$ are calculated in the ground state within a mean-field approximation. The Fermi sector is insulating ($phi=0$) and the Bose sector is normal ($psi=0$) for $0 le rho_F < rho_c$. The model has {em coupled first-order} transitions at $rho_F = rho_c simeq 0.3$ where both $phi$ and $psi$ are discontinuous. The Fermi sector is metallic ($phi>0$) and the Bose sector is superfluid ($psi>0$) for $rho_c < rho_F < 1$. At $rho_F=1/2$, fermion density of states $rho$ has a van Hove singularity, the bulk modulus $kappa$ displays a cusp-like singularity, the system has a density wave (DW) order, and $phi$ and $psi$ are maximum. At $rho_F=rho_{kappa} simeq 0.81$, $kappa$ vanishes, becoming {em negative} for $rho_{kappa}<rho_F<1$. The role of composite hopping in the evolution of Fermi band dispersions and Fermi surfaces as a function of $rho_F$ is highlighted. The estimate for BEC critical temperature is in the subkelvin range for ultracold atom systems and several hundred kelvins for possible solid-state examples of the model.
The spin-web compound Cu3TeO6, belongs to an intriguing group of materials where magnetism is governed by 3d9 copper Cu2+ ions. This compound has been sparsely experimentally studied and we here present the first investigation of its local magnetic properties using muon-spin relaxation/rotation ({mu}+SR). Our results show a clear long-range 3D magnetic order below TN as indicated by clear zero-field (ZF) muon-precessions. At TN = 61.7 K a very sharp transition is observed in the weak transverse-field (wTF) as well as ZF data. Contrary to suggestions by susceptibility measurements and inelastic neutron scattering, we find no evidence for either static or dynamic (on the time-scale of {mu}+SR) spin-correlations above TN.