Do you want to publish a course? Click here

Multi-pixel Geiger-mode avalanche photodiode and wavelength shifting fibre readout of plastic scintillator counters of the EMMA underground experiment

187   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The results of a development of a scintillator counter with wavelength shifting (WLS) fibre and a multi-pixel Geiger-mode avalanche photodiode readout are presented. The photodiode has a metal-resistor-semiconductor layered structure and operates in the limited Geiger mode. The scintillator counter has been developed for the EMMA underground cosmic ray experiment.



rate research

Read More

Multi-pixel photodiodes operating in a limited Geiger mode will be used for photoreadout of scintillator counters in underground cosmic ray experiment EMMA. Main parameters of photodiodes and the performance of EMMA scintillator counters are presented.
In this short note we present results of background measurements carried out with a polystyrene based cast plastic 12.0x12.0x3.0 cm^3 size scintillator counter with a wavelength shifting fibre and a multi-pixel Geiger mode avalanche photodiode readout in the Baksan underground laboratory at a depth of 200 meters of water equivalent. The total counting rate of the scintillator counter measured at this depth and at a threshold corresponding to ~0.37 of a minimum ionizing particle is approximately 1.3 Hz.
The performance of scintillator counters with embedded wavelength-shifting fibers has been measured in the Fermilab Meson Test Beam Facility using 120 GeV protons. The counters were extruded with a titanium dioxide surface coating and two channels for fibers at the Fermilab NICADD facility. Each fiber end is read out by a 2*2 mm^2 silicon photomultiplier. The signals were amplified and digitized by a custom-made front-end electronics board. Combinations of 5*2 cm^2 and 6*2 cm^2 extrusion profiles with 1.4 and 1.8 mm diameter fibers were tested. The design is intended for the cosmic-ray veto detector for the Mu2e experiment at Fermilab. The light yield as a function of the transverse and longitudinal position of the beam will be given.
A successfull application of Geiger-mode multipixel avalanche diodes (GMAPDs) for pulse-shape discrimination in alpha-beta spectrometry using organic liquid scintillator is described in this paper. Efficient discrimination of alpha and beta components in the emission of radioactive isotopes is achieved for alpha energies above 0.3 MeV. The ultra-compact design of the scintillating detector helps to efficiently suppress cosmic-ray and ambient radiation background. This approach allows construction of hand-held robust devices for monitoring of radioactive contamination in various environmental conditions.
The multi-pixel photon counter (MPPC) is a newly developed photodetector with an excellent photon counting capability. It also has many attractive features such as small size, high gain, low operation voltage and power consumption, and capability of operating in magnetic fields and in room temperature. The basic performance of samples has been measured. A gain of ~10^6 is achieved with a noise rate less than 1 MHz with 1 p.e. threshold, and cross-talk probability of less than 30% at room temperature. The photon detection efficiency for green light is twice or more that of the photomultiplier tubes. It is found that the basic performance of the MPPC is satisfactory for use in real experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا