No Arabic abstract
Many studies on animal and human movement patterns report the existence of scaling laws and power-law distributions. Whereas a number of random walk models have been proposed to explain observations, in many situations individuals actually rely on mental maps to explore strongly heterogeneous environments. In this work we study a model of a deterministic walker, visiting sites randomly distributed on the plane and with varying weight or attractiveness. At each step, the walker minimizes a function that depends on the distance to the next unvisited target (cost) and on the weight of that target (gain). If the target weight distribution is a power-law, $p(k)sim k^{-beta}$, in some range of the exponent $beta$, the foraging medium induces movements that are similar to Levy flights and are characterized by non-trivial exponents. We explore variations of the choice rule in order to test the robustness of the model and argue that the addition of noise has a limited impact on the dynamics in strongly disordered media.
In this work, we study the critical behavior of an epidemic propagation model that considers individuals that can develop drug resistance. In our lattice model, each site can be found in one of four states: empty, healthy, normally infected (not drug resistant) and strain infected (drug resistant) states. The most relevant parameters in our model are related to the mortality, cure and mutation rates. This model presents two distinct stationary active phases: a phase with co-existing normal and drug resistant infected individuals and an intermediate active phase with only drug resistant individuals. We employ a finite-size scaling analysis to compute the critical points the critical exponents ratio $beta/ u$ governing the phase-transitions between these active states and the absorbing inactive state. Our results are consistent with the hypothesis that these transitions belong to the directed percolation universality class.
Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. To understand the interactive effects of environmental stochasticity, spatial heterogeneity, and dispersal on population growth, we study the following model for population abundances in $n$ patches: the conditional law of $X_{t+dt}$ given $X_t=x$ is such that when $dt$ is small the conditional mean of $X_{t+dt}^i-X_t^i$ is approximately $[x^imu_i+sum_j(x^j D_{ji}-x^i D_{ij})]dt$, where $X_t^i$ and $mu_i$ are the abundance and per capita growth rate in the $i$-th patch respectivly, and $D_{ij}$ is the dispersal rate from the $i$-th to the $j$-th patch, and the conditional covariance of $X_{t+dt}^i-X_t^i$ and $X_{t+dt}^j-X_t^j$ is approximately $x^i x^j sigma_{ij}dt$. We show for such a spatially extended population that if $S_t=(X_t^1+...+X_t^n)$ is the total population abundance, then $Y_t=X_t/S_t$, the vector of patch proportions, converges in law to a random vector $Y_infty$ as $ttoinfty$, and the stochastic growth rate $lim_{ttoinfty}t^{-1}log S_t$ equals the space-time average per-capita growth rate $sum_imu_iE[Y_infty^i]$ experienced by the population minus half of the space-time average temporal variation $E[sum_{i,j}sigma_{ij}Y_infty^i Y_infty^j]$ experienced by the population. We derive analytic results for the law of $Y_infty$, find which choice of the dispersal mechanism $D$ produces an optimal stochastic growth rate for a freely dispersing population, and investigate the effect on the stochastic growth rate of constraints on dispersal rates. Our results provide fundamental insights into ideal free movement in the face of uncertainty, the persistence of coupled sink populations, the evolution of dispersal rates, and the single large or several small (SLOSS) debate in conservation biology.
We consider a system of two competing populations in two-dimensional heterogeneous environments. The populations are assumed to move horizontally and vertically with different probabilities, but are otherwise identical. We regard these probabilities as dispersal strategies. We show that the evolutionarily stable strategies are to move in one direction only. Our results predict that it is more beneficial for the species to choose the direction with smaller variation in the resource distribution. This finding seems to be in agreement with the classical results of Hasting [15] and Dockery et al. [11] for the evolution of slow dispersal, i.e. random diffusion is selected against in spatially heterogeneous environments. These conclusions also suggest that broader dispersal strategies should be considered regarding the movement in heterogeneous habitats.
The high frequency dynamics of fluid oxygen have been investigated by Inelastic X-ray Scattering. In spite of the markedly supercritical conditions ($Tapprox 2 T_c$, $P>10^2 P_c$), the sound velocity exceeds the hydrodynamic value of about 20%, a feature which is the fingerprint of liquid-like dynamics. The comparison of the present results with literature data obtained in several fluids allow us to identify the extrapolation of the liquid vapor-coexistence line in the ($P/P_c$, $T/T_c$) plane as the relevant edge between liquid- and gas-like dynamics. More interestingly, this extrapolation is very close to the non metal-metal transition in hot dense fluids, at pressure and temperature values as obtained by shock wave experiments. This result points to the existence of a connection between structural modifications and transport properties in dense fluids.
High frequency sound is observed in lithium diborate glass, Li$_2$O--2B$_2$O$_3$, using Brillouin scattering of light and x-rays. The sound attenuation exhibits a non-trivial dependence on the wavevector, with a remarkably rapid increase towards a Ioffe-Regel crossover as the frequency approaches the boson peak from below. An analysis of literature results reveals the near coincidence of the boson-peak frequency with a Ioffe-Regel limit for sound in {em all} sufficiently strong glasses. We conjecture that this behavior, specific to glassy materials, must be quite universal among them.